This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143648 a(n) = ((4 + sqrt 6)^n + (4 - sqrt 6)^n)/2. 1
 1, 4, 22, 136, 868, 5584, 35992, 232096, 1496848, 9653824, 62262112, 401558656, 2589848128, 16703198464, 107727106432, 694784866816, 4481007870208, 28900214293504, 186391635645952, 1202130942232576, 7753131181401088 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A084120. Sequences defined by a(n) = ((A + sqrt(B))^n + (A - sqrt(B))^n)/2 have recurrences a(n) = 2*A*a(n-1) + (B - A^2)*a(n-2) and generating functions g.f.: (1-Ax)/(1-2Ax+(A^2-B)x^2). - R. J. Mathar, Nov 01 2008 LINKS FORMULA From R. J. Mathar, Klaus Brockhaus and Philippe Deléham, Nov 01 2008: (Start) a(n) = 8*a(n-1) - 10*a(n-2). G.f.: (1-4x)/(1-8x+10x^2). (End) a(n) = (Sum_{k=0..n} A098158(n,k)*4^(2*k)*6^(n-k))/4^n. - Philippe Deléham, Nov 06 2008 EXAMPLE a(3) = 136. a(4) = ((4 + sqrt(6))^4 + (4 - sqrt(6))^4)/2 = 4^4 + 6*sqrt(6)^2*4^2 + sqrt(6)^4 = 4^4 + 6*6*4^2 + 6^2 = 868. - Klaus Brockhaus, Nov 01 2008 MATHEMATICA Table[MatrixPower[{{4, 2}, {3, 4}}, n][[1]][[1]], {n, 0, 44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) PROG (MAGMA) Z:= PolynomialRing(Integers()); N:=NumberField(x^2-6); S:=[ ((4+r6)^n+(4-r6)^n)/2: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 01 2008 CROSSREFS Sequence in context: A183280 A183281 A067120 * A069835 A007196 A091638 Adjacent sequences:  A143645 A143646 A143647 * A143649 A143650 A143651 KEYWORD nonn,easy AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Oct 27 2008 EXTENSIONS More terms from Klaus Brockhaus and R. J. Mathar, Nov 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 20:23 EDT 2019. Contains 323528 sequences. (Running on oeis4.)