The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068913 Square array read by antidiagonals of number of k step walks (each step +-1 starting from 0) which are never more than n or less than -n. 10
 1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 4, 4, 2, 1, 0, 4, 6, 4, 2, 1, 0, 8, 12, 8, 4, 2, 1, 0, 8, 18, 14, 8, 4, 2, 1, 0, 16, 36, 28, 16, 8, 4, 2, 1, 0, 16, 54, 48, 30, 16, 8, 4, 2, 1, 0, 32, 108, 96, 60, 32, 16, 8, 4, 2, 1, 0, 32, 162, 164, 110, 62, 32, 16, 8, 4, 2, 1, 0, 64, 324, 328, 220, 124, 64, 32, 16, 8, 4, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Antidiagonals n = 0..200, flattened FORMULA Starting with T(n, 0) = 1, if (k-n) is negative or even then T(n, k) = 2*T(n, k-1), otherwise T(n, k) = 2*T(n, k-1)-A061897(n-1, (k-n-1)/2). So for n>=k, T(n, k) = 2^k. T(n,0) = 1, T(n,k) = (2^k/(n+1))*Sum_{r=1..n+1} (-1)^r*cos((Pi*(2*r-1))/(2*(n+1)))^k*cot((Pi*(1-2*r))/(4*(n+1))). - Herbert Kociemba, Sep 23 2020 EXAMPLE Rows start:   1,  0,  0,  0,  0, ...   1,  2,  2,  4,  4, ...   1,  2,  4,  6, 12, ...   1,  2,  4,  8, 14, ...   ... MATHEMATICA T[n_, 0]=1; T[n_, k_]:=2^k/(n+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (n+1))]^k Cot[(Pi (1-2r))/(4 (n+1))], {r, 1, n+1}]; Table[T[r, n-r], {n, 0, 20}, {r, 0, n}]//Round//Flatten (* Herbert Kociemba, Sep 23 2020 *) CROSSREFS Cf. early rows: A000007, A016116 (without initial term), A068911, A068912, A216212, A216241, A235701. Central and lower diagonals are A000079, higher diagonals include A000918, A028399. Sequence in context: A289281 A212957 A035393 * A128306 A305152 A170983 Adjacent sequences:  A068910 A068911 A068912 * A068914 A068915 A068916 KEYWORD nonn,tabl AUTHOR Henry Bottomley, Mar 06 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 12:19 EST 2020. Contains 338720 sequences. (Running on oeis4.)