The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068527 Difference between smallest square >= n and n. 25
 0, 0, 2, 1, 0, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The greedy inverse (sequence of the smallest k such that a(k)=n) starts 0, 3, 2, 6, 5, 11, 10, 18, 17, 27, 26, 38, 37, 51, 50, ... and appears to be given by A010000 and A002522, interleaved. - R. J. Mathar, Nov 17 2014 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A048761(n) - n = ceiling(sqrt(n))^2 - n. G.f.: (-x^2 + (x-x^2)*Sum_{m>=1} (1+2*m)*x^(m^2))/(1-x)^2. This sum is related to Jacobi Theta functions. - Robert Israel, Nov 17 2014 MAPLE A068527:=n->ceil(sqrt(n))^2-n; seq(A068527(n), n=0..100); # Wesley Ivan Hurt, Jun 11 2014 MATHEMATICA Table[Ceiling[Sqrt[n]]^2-n, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *) PROG (MAGMA) [ Ceiling(Sqrt(n))^2-n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 11 2014 (PARI) a(n)=if(issquare(n), 0, (sqrtint(n)+1)^2-n) \\ Charles R Greathouse IV, Oct 22 2014 CROSSREFS Cf. A053186, A068869, A066857. Sequence in context: A334122 A086802 A092488 * A218599 A051623 A244124 Adjacent sequences:  A068524 A068525 A068526 * A068528 A068529 A068530 KEYWORD nonn,easy AUTHOR Vladeta Jovovic, Mar 21 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 06:10 EDT 2021. Contains 343146 sequences. (Running on oeis4.)