|
|
A068525
|
|
Smallest k-almost prime between twin primes (for k >= 2).
|
|
5
|
|
|
4, 12, 60, 72, 240, 192, 2112, 1152, 14592, 26112, 15360, 139968, 138240, 675840, 2101248, 737280, 4866048, 786432, 22118400, 36175872, 194641920, 63700992, 138412032, 169869312, 1321205760, 11123294208, 16357785600, 25669140480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
Because it is unknown whether an infinite number of twin primes exist, it is unknown whether this sequence is infinite.
|
|
LINKS
|
Donovan Johnson, Table of n, a(n) for n = 2..431
Eric Weisstein's World of Mathematics, Almost Prime
Eric Weisstein's World of Mathematics, Twin Primes
|
|
EXAMPLE
|
a(6)=240 because 240=2^4*3*5 is a 6-almost prime, 239 and 241 are twin primes and there is no 6-almost prime smaller than 240 which is between a pair of twin primes.
|
|
MATHEMATICA
|
f[n_] := Plus @@ Last /@ FactorInteger@n; p = 3; t = Table[0, {30}]; While[p < 26*10^9, If[ PrimeQ[p + 2], a = f[p + 1]; If[ t[[a]] == 0, t[[a]] = p + 1; Print[{a, p + 1}]]]; p = NextPrime@p]; t (* Robert G. Wilson v, Aug 02 2010 *)
|
|
PROG
|
(PARI) v=vector(32) for(n=3, 2250000000, if(n%1000000==0, print(n)); if(isprime(n) && isprime(n+2), k=bigomega(n+1); if(v[k]==0, v[k]=n+1; print(v[k], ", ", k)))); v
\\ The PARI program prints a progress mark per million integers examined. v[k] is loaded with the first k-almost prime encountered between primes and is printed upon discovery. The entire vector is printed at program completion (or can be printed after interrupting the PARI program with CTRL-C).
|
|
CROSSREFS
|
Cf. A001358 (semiprimes, with links to other almost primes), A001359 (lesser of twin primes), A014574, A075590.
Sequence in context: A177265 A243923 A192331 * A067755 A051858 A084709
Adjacent sequences: A068522 A068523 A068524 * A068526 A068527 A068528
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Rick L. Shepherd, Mar 21 2002
|
|
EXTENSIONS
|
a(27) - a(29) from Robert G. Wilson v, Aug 02 2010
|
|
STATUS
|
approved
|
|
|
|