This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010000 a(0) = 1, a(n) = n^2 + 2 for n>0. 20
 1, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Least k such that A070864(k) = 2n-1. - Robert G. Wilson v and Benoit Cloitre, May 20 2002 With an offset of 3, beginning with 6 (deleting first two terms) n*(n+a(n)) + 1 is a cube = (n+1)^3: 1(1+6) +1 = 8, 2(2+11) +1 = 27 etc. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003 For n>=2, a(n) is the maximum element in the continued fraction for sum(k>=1,1/n^(2^k)) (for n=2 see A006464). - Benoit Cloitre, Jun 12 2007 Equals binomial transform of [1, 2, 1, 1, -1, 1, -1, 1,...]. - Gary W. Adamson, Apr 23 2008 LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A000217(n-2) + A000217(n+1) for n>0. - Jon Perry, Jul 23 2003 Euler transform of length 6 sequence [ 3, 0, 1, 0, 0, -1]. - Michael Somos, Aug 11 2009 G.f.: (1 + x^3) / (1 - x)^3. a(n) = a(-n) for all n in Z. - Michael Somos, Aug 11 2009 E.g.f.: (x*(x+1)+2)*e^x - 1. - Gopinath A. R., Feb 14 2012 a(n) = 2*n*sum(j=0..n, (-1)^(n-j)*binomial(n,j)*(j+1/n)^(n+1))/(n+1)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 03 2013 EXAMPLE G.f. = 1 + 3*x + 6*x^2 + 11*x^3 + 18*x^4 + 27*x^5 + 38*x^6 + 51*x^7 + 66*x^8 + ... MATHEMATICA a[1] = a[2] = 1; a[n_] := a[n] = 2 + a[n - a[n - 1]]; b = Table[0, {100}]; Do[c = (a[n] + 1)/2; If[c < 101 && b[[c]] == 0, b[[c]] = n], {n, 1, 10^4}]; b Join[{1}, Range[50]^2 + 2] (* Bruno Berselli, Feb 08 2012 *) a[ n_] := n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 05 2015 *) PROG (PARI) {a(n) = n^2 + 2 - (n==0)}; /* Michael Somos, Aug 11 2009 */ (Maxima) a(n):=if n=0 then 1 else 2*n*sum((-1)^(n-j)*binomial(n, j)*(j+1/n)^(n+1), j, 0, n)/(n+1)!; \\ Vladimir Kruchinin, Jun 03 2013 CROSSREFS Cf. A070864. Apart from initial terms, same as A059100. Cf. A206399. Sequence in context: A140126 A140235 A224214 * A183199 A172046 A014125 Adjacent sequences:  A009997 A009998 A009999 * A010001 A010002 A010003 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.