login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010000 a(0) = 1, a(n) = n^2 + 2 for n>0. 20
1, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Least k such that A070864(k) = 2n-1. - Robert G. Wilson v and Benoit Cloitre, May 20 2002

With an offset of 3, beginning with 6 (deleting first two terms) n*(n+a(n)) + 1 is a cube = (n+1)^3: 1(1+6) +1 = 8, 2(2+11) +1 = 27 etc. - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 03 2003

For n>=2, a(n) is the maximum element in the continued fraction for sum(k>=1,1/n^(2^k)) (for n=2 see A006464). - Benoit Cloitre, Jun 12 2007

Equals binomial transform of [1, 2, 1, 1, -1, 1, -1, 1,...]. - Gary W. Adamson, Apr 23 2008

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = A000217(n-2) + A000217(n+1) for n>0. - Jon Perry, Jul 23 2003

Euler transform of length 6 sequence [ 3, 0, 1, 0, 0, -1]. - Michael Somos, Aug 11 2009

G.f.: (1 + x^3) / (1 - x)^3. a(n) = a(-n) for all n in Z. - Michael Somos, Aug 11 2009

E.g.f.: (x*(x+1)+2)*e^x - 1. - Gopinath A. R., Feb 14 2012

a(n) = 2*n*sum(j=0..n, (-1)^(n-j)*binomial(n,j)*(j+1/n)^(n+1))/(n+1)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 03 2013

EXAMPLE

G.f. = 1 + 3*x + 6*x^2 + 11*x^3 + 18*x^4 + 27*x^5 + 38*x^6 + 51*x^7 + 66*x^8 + ...

MATHEMATICA

a[1] = a[2] = 1; a[n_] := a[n] = 2 + a[n - a[n - 1]]; b = Table[0, {100}]; Do[c = (a[n] + 1)/2; If[c < 101 && b[[c]] == 0, b[[c]] = n], {n, 1, 10^4}]; b

Join[{1}, Range[50]^2 + 2] (* Bruno Berselli, Feb 08 2012 *)

a[ n_] := n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 05 2015 *)

PROG

(PARI) {a(n) = n^2 + 2 - (n==0)}; /* Michael Somos, Aug 11 2009 */

(Maxima)

a(n):=if n=0 then 1 else 2*n*sum((-1)^(n-j)*binomial(n, j)*(j+1/n)^(n+1), j, 0, n)/(n+1)!; \\ Vladimir Kruchinin, Jun 03 2013

CROSSREFS

Cf. A070864. Apart from initial terms, same as A059100.

Cf. A206399.

Sequence in context: A140126 A140235 A224214 * A183199 A172046 A014125

Adjacent sequences:  A009997 A009998 A009999 * A010001 A010002 A010003

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 04:01 EST 2017. Contains 294912 sequences.