OFFSET
1,1
COMMENTS
This is an approximation to Pi. It is accurate to 0.04025%.
Consider the recurring part of 22/7 and the sequences R(i) = 2, 1, 4, 2, 3, 0, 2, ... and Q(i) = 1, 4, 2, 8, 5, 7, 1, .... For i > 0, let X(i) = 10*R(i) + Q(i). Then Q(i+1) = floor(X(i)/Y); R(i+1) = X(i) - Y*Q(i+1); here Y=5; X(0)=X=7. Note 1/7 = 7/49 = X/(10*Y-1). Similar comment holds elsewhere. If we consider the sequences R(i) = 3, 2, 3, 5, 5, 1, 4, 0, 6, 4, 6, 3, 4, 3, 1, 1, 5, 2, 6, 0, 2, 0, 3, ... and Q(i) = A021027, we have X=3; Y=7 (attributed to Vedic literature). - K.V.Iyer, Jun 16 2010, Jun 18 2010
The sequence of convergents of the continued fraction of Pi begins [3, 22/7, 333/106, 355/113, 103993/33102, ...]. 22/7 is the second convergent. The summation 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)(4*n+6)*(4*n+7)) = 22/7 - Pi shows that 22/7 is an over-approximation to Pi. - Peter Bala, Oct 12 2021
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.
LINKS
D. Castellanos, The ubiquitous pi, Math. Mag., 61 (1988), 67-98 and 148-163. - N. J. A. Sloane, Mar 24 2012
D. P. Dalzell, On 22/7, J. London Math. Soc. 19, 133-134, 1944.
Dale Winham, Facts about Pi.
Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
FORMULA
a(0)=3, a(n) = floor(714285/10^(5-(n mod 6))) mod 10. - Sascha Kurz, Mar 23 2002 [corrected by Jason Yuen, Aug 18 2024]
For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - Zak Seidov, Mar 26 2015
G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - Vincenzo Librandi, Mar 27 2015
MATHEMATICA
CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)
Join[{3}, LinearRecurrence[{1, 0, -1, 1}, {1, 4, 2, 8}, 104]] (* Ray Chandler, Aug 26 2015 *)
RealDigits[22/7, 10, 120][[1]] (* Harvey P. Dale, Oct 04 2021 *)
PROG
(Magma) I:=[3, 1, 4, 2, 8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
CROSSREFS
KEYWORD
AUTHOR
Nenad Radakovic, Mar 22 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 23 2002
Alternative to broken link added by R. J. Mathar, Jun 18 2010
STATUS
approved