OFFSET
1,5
EXAMPLE
a(6) counts these 4 partitions: 6, 42, 321, 222.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 3]], {n, 0, z}] (* A182714 *)
t2 = Table[Count[f[n], p_ /; Count[p, 1] <= Count[p, 3]], {n, 0, z}] (* A182714(n+3) *)
t3 = Table[Count[f[n], p_ /; Count[p, 1] == Count[p, 3]], {n, 0, z}] (* A240058 *)
t4 = Table[Count[f[n], p_ /; Count[p, 1] > Count[p, 3]], {n, 0, z}] (* A240059 *)
t5 = Table[Count[f[n], p_ /; Count[p, 1] >= Count[p, 3]], {n, 0, z}] (* A240059(n+1) *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 31 2014
STATUS
approved