login
A067933
Primes p such that p == -1 (mod phi(p-1)).
2
2, 3, 5, 7, 11, 31, 71, 2591, 131071
OFFSET
1,1
COMMENTS
No more terms up to 373587883 (the 20 millionth prime).
MATHEMATICA
Do[p = Prime[n]; If[ Mod[p + 1, EulerPhi[p - 1]] == 0, Print[p]], {n, 1, 10^8}] (* Cloitre *)
Select[Prime[Range[10^5]], Mod[#, EulerPhi[# - 1]] == EulerPhi[# - 1] - 1 &] (* Alonso del Arte, Sep 26 2011 *)
CROSSREFS
Sequence in context: A085300 A119388 A093487 * A005234 A254225 A334026
KEYWORD
more,nonn
AUTHOR
Benoit Cloitre, Feb 22 2002
EXTENSIONS
Edited by Robert G. Wilson v, Feb 27 2002
STATUS
approved