login
A067932
Primes p such that p+3 == 0 (mod phi(p+3)).
1
3, 5, 13, 29, 61, 509, 1021, 4093, 16381, 1048573, 4194301, 16777213, 536870909, 19807040628566084398385987581, 83076749736557242056487941267521533, 5316911983139663491615228241121378301
OFFSET
1,1
COMMENTS
phi(n) divides n iff n=1 or n=2^w*3^u for w>=1 and u>=0 (see A007694). Such an n can only have the form p+3 if n=6 or n is a power of 2. So the terms of the sequence are 3 and the primes of the form 2^n-3, listed in A050415.
LINKS
MATHEMATICA
Prepend[Select[2^Range[2, 200]-3, PrimeQ], 3]
CROSSREFS
Sequence in context: A295617 A290113 A238216 * A339155 A168314 A335562
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Feb 22 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Feb 27 2002 and by Dean Hickerson, Mar 21 2002
STATUS
approved