

A067934


Let rep(k) = (10^k  1)/9 be the kth repunit number = 11111..1111 with k 1 digits, then sequence gives values of k such that rep(k) == 1 (mod k).


2



1, 2, 5, 7, 10, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 259
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Due to Fermat's little theorem, all prime numbers except 3 are in the sequence. E.g., rep(17) = 1 + 17*653594771241830.
Numbers n such that 10^n == 10 (mod 9n). The number (10^n  1)/9 is a term if and only if n is a term.  Thomas Ordowski, Apr 28 2018
Generally, the repunit theorem: Let integer b <> 1 and n be a positive integer. Define R_b(n) = (b^n1)/(b1) = N. Then R_b(N) == 1 (mod N) if and only if N == 1 (mod n).  Thomas Ordowski, Apr 28 2018
Proof: (b^N1)/(b1)1 = (b^Nb)/(b1) is divisible by N if and only if b^Nb is divisible by b^n1. Since b^Nb == b^(N mod n)b (mod b^n1), we have that b^Nb is divisible by b^n1 if and only if N == 1 (mod n). QED.  Max Alekseyev, Apr 28 2018
Terms which are not prime are 1 U A303608.  Robert G. Wilson v, Jun 13 2018
No multiples of 3 are in this sequence.  Eric Chen, Jun 13 2018
A005939 is subsequence.  Eric Chen, Jun 13 2018


LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000


EXAMPLE

(10^11  1)/9 = 11111111111 == 1 (mod 11), so 11 is a term.
We also have the congruence 10^11 == 10 (mod 9*11).


MATHEMATICA

{1}~Join~Select[Range[260], Mod[#2, #1] == 1 & @@ {#, (10^#  1)/9} &] (* Michael De Vlieger, May 06 2018 *)
fQ[n_] := PowerMod[10, n, 9 n] == 10; fQ[1] = True; Select[Range@260, fQ] (* Robert G. Wilson v, Jun 13 2018 *)


PROG

(PARI) is(n)=n==1  ((10^n1)/9)%n==1 \\ Eric Chen, Jun 13 2018


CROSSREFS

Cf. A000864, A015919, A303608, A005939.
Sequence in context: A261034 A330777 A259749 * A284470 A112730 A288602
Adjacent sequences: A067931 A067932 A067933 * A067935 A067936 A067937


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Mar 05 2002


STATUS

approved



