This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067694 Minimum number of distinct parts in a self-conjugate partition of n, or 0 if n=2. 2
 0, 1, 0, 2, 1, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS There are no self-conjugate partitions of 2, so we set a(2)=0. LINKS Antti Karttunen, Table of n, a(n) for n = 0..65537 FORMULA a(0)=a(2)=0; a(n^2)=1; a(4n+2)=3 for n>0; a(n)=2 in all other cases. MATHEMATICA a[0]=a[2]=0; a[n_] := Which[IntegerQ[Sqrt[n]], 1, Mod[n, 4]==2, 3, True, 2] PROG (PARI) A067694(n) = if((2==n)||!n, 0, if(2==(n%4), 3, if(issquare(n), 1, 2))); \\ Antti Karttunen, Sep 27 2018 CROSSREFS Cf. A000700, A067731. Sequence in context: A123884 A178412 A182598 * A131810 A233519 A192295 Adjacent sequences:  A067691 A067692 A067693 * A067695 A067696 A067697 KEYWORD easy,nonn AUTHOR Naohiro Nomoto, Feb 05 2002 EXTENSIONS Edited by Dean Hickerson, Feb 15 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 17:00 EDT 2019. Contains 326059 sequences. (Running on oeis4.)