login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067694 Minimum number of distinct parts in a self-conjugate partition of n, or 0 if n=2. 2
0, 1, 0, 2, 1, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

There are no self-conjugate partitions of 2, so we set a(2)=0.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..65537

FORMULA

a(0)=a(2)=0; a(n^2)=1; a(4n+2)=3 for n>0; a(n)=2 in all other cases.

MATHEMATICA

a[0]=a[2]=0; a[n_] := Which[IntegerQ[Sqrt[n]], 1, Mod[n, 4]==2, 3, True, 2]

PROG

(PARI) A067694(n) = if((2==n)||!n, 0, if(2==(n%4), 3, if(issquare(n), 1, 2))); \\ Antti Karttunen, Sep 27 2018

CROSSREFS

Cf. A000700, A067731.

Sequence in context: A123884 A178412 A182598 * A131810 A233519 A192295

Adjacent sequences:  A067691 A067692 A067693 * A067695 A067696 A067697

KEYWORD

easy,nonn

AUTHOR

Naohiro Nomoto, Feb 05 2002

EXTENSIONS

Edited by Dean Hickerson, Feb 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 17:00 EDT 2019. Contains 326059 sequences. (Running on oeis4.)