

A182598


Number of prime factors of form cn+1 for numbers 6^n+1


0



1, 2, 1, 2, 3, 2, 2, 1, 2, 1, 2, 3, 2, 2, 3, 2, 4, 2, 2, 1, 3, 2, 2, 2, 3, 3, 4, 3, 6, 1, 3, 4, 2, 5, 5, 3, 2, 5, 4, 3, 4, 1, 2, 2, 4, 1, 5, 3, 3, 6, 3, 4, 5, 4, 4, 3, 2, 1, 3, 2, 1, 3, 3, 3, 8, 4, 4, 2, 4, 3, 1, 5, 3, 5, 4, 1, 7, 5, 3, 3, 3, 4, 5, 3, 4, 7, 2, 2, 7, 5, 3, 2, 4, 5, 2, 3, 2, 4, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Repeated prime factors are counted.


LINKS

Table of n, a(n) for n=2..100.
S. Mustonen, On prime factors of numbers m^n+1
Seppo Mustonen, On prime factors of numbers m^n+1 [Local copy]


EXAMPLE

For n=6, 6^n1=46655=5*7*31*43 has three prime factors of form, namely 7=n+1, 31=5n+1, 43=7n+1. Thus a(6)=3.


MATHEMATICA

m = 6; n = 2; nmax = 100;
While[n <= nmax, {l = FactorInteger[m^n + 1]; s = 0;
For[i = 1, i <= Length[l],
i++, {p = l[[i, 1]];
If[IntegerQ[(p  1)/n] == True, s = s + l[[i, 2]]]; }];
a[n] = s; } n++; ];
Table[a[n], {n, 2, nmax}]
Table[{p, e}=Transpose[FactorInteger[6^n+1]]; Sum[If[Mod[p[[i]], n] == 1, e[[i]], 0], {i, Length[p]}], {n, 2, 50}]


CROSSREFS

Sequence in context: A248886 A123884 A178412 * A331084 A067694 A131810
Adjacent sequences: A182595 A182596 A182597 * A182599 A182600 A182601


KEYWORD

nonn


AUTHOR

Seppo Mustonen, Nov 24 2010


STATUS

approved



