0,4

There are no self-conjugate partitions of 2, so we set a(2)=0.

Table of n, a(n) for n=0..87.

a(n) = r - (s mod 2), where n = r(r+1)/2 + s with 0 <= s <= r; i.e. r = floor((sqrt(8n+1)-1)/2).

r[n_] := Floor[(Sqrt[8n+1]-1)/2]; s[n_] := n-r[n](r[n]+1)/2; a[n_] := r[n]-Mod[s[n], 2]

Cf. A000700, A067694.

Sequence in context: A268835 A006641 A115756 * A147844 A130634 A053735

Adjacent sequences: A067728 A067729 A067730 * A067732 A067733 A067734

easy,nonn

Naohiro Nomoto, Feb 05 2002

Edited by Dean Hickerson, Feb 15 2002

approved