login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067731 Maximum number of distinct parts in a self-conjugate partition of n, or 0 if n=2. 1
0, 1, 0, 2, 1, 2, 3, 2, 3, 2, 4, 3, 4, 3, 4, 5, 4, 5, 4, 5, 4, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 8, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 10, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

There are no self-conjugate partitions of 2, so we set a(2)=0.

LINKS

Table of n, a(n) for n=0..87.

FORMULA

a(n) = r - (s mod 2), where n = r(r+1)/2 + s with 0 <= s <= r; i.e. r = floor((sqrt(8n+1)-1)/2).

MATHEMATICA

r[n_] := Floor[(Sqrt[8n+1]-1)/2]; s[n_] := n-r[n](r[n]+1)/2; a[n_] := r[n]-Mod[s[n], 2]

CROSSREFS

Cf. A000700, A067694.

Sequence in context: A268835 A006641 A115756 * A147844 A130634 A053735

Adjacent sequences:  A067728 A067729 A067730 * A067732 A067733 A067734

KEYWORD

easy,nonn

AUTHOR

Naohiro Nomoto, Feb 05 2002

EXTENSIONS

Edited by Dean Hickerson, Feb 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 09:05 EST 2016. Contains 278749 sequences.