This site is supported by donations to The OEIS Foundation.

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064722 a(1) = 0; for n >= 2, a(n) = n - (largest prime <= n). 11
 0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 LINKS Harry J. Smith, Table of n, a(n) for n=1,...,1000 FORMULA a(n) = n - A007917(n). a(n) = 0 iff n is 1 or a prime. Computable also as a "commutator": PrimePi[Prime[m]]-Prime[PrimePi[m]]= A000720[A000040(m)]-A000040[A000720(m)]. Labels position of composites between 2 consecutive primes. - Labos Elemer, Oct 19 2001 a(n) = a(n-1)*0^A010051(n) + 1 - A010051(n), a(1) = 0. - Reinhard Zumkeller, Mar 23 2006 a(n) = n mod A007917(n). - Michel Marcus, Aug 22 2014 EXAMPLE a(26) = 26 - 23 = 3, a(37) = 37 - 37 = 0. MAPLE 0, seq(n - prevprime(n+1), n=2..100); # Robert Israel, Aug 25 2014 MATHEMATICA Join[{0}, Table[n-NextPrime[n+1, -1], {n, 2, 110}]] (* Harvey P. Dale, Aug 23 2011 *) PROG (PARI) { for (n = 1, 1000, if (n>1, a=n - precprime(n), a=0); write("b064722.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 23 2009 CROSSREFS Cf. A007917, A007920. Sequence in context: A123343 A054439 A215151 * A123735 A155839 A229615 Adjacent sequences:  A064719 A064720 A064721 * A064723 A064724 A064725 KEYWORD nonn AUTHOR Reinhard Zumkeller, Oct 13 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .