login
A064721
Potential Sierpiński numbers: integers for which the smallest m > 2^10 in A040076 such that n*2^m+1 is prime (A050921).
1
383, 766, 881, 1532, 1643, 1762, 2897, 3061, 3064, 3286, 3443, 3524, 3829, 4847, 4861, 5297, 5359, 5794, 5897, 6122, 6128, 6319, 6572, 6886, 7013, 7352, 7493, 7651, 7658, 7909, 7957, 8119, 8269, 8423, 8543, 8929, 9323, 9694, 9722
OFFSET
1,1
COMMENTS
The first confirmed Sierpiński number is 78557.
MATHEMATICA
Do[m = 0; While[m <= 2^10 && !PrimeQ[n*2^m + 1], m++ ]; If[m > 2^10, Print[n]], {n, 1, 10^4} ]
CROSSREFS
Sequence in context: A015861 A072385 A045122 * A252060 A046014 A342065
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 16 2001
STATUS
approved