login
A318656
The 2-adic valuation of ratio A318649(n)/A318512(n); a(n) = 2*A007814(n) - A046645(n).
3
0, 1, -1, 1, -1, 0, -1, 2, -3, 0, -1, 0, -1, 0, -2, 1, -1, -2, -1, 0, -2, 0, -1, 1, -3, 0, -4, 0, -1, -1, -1, 2, -2, 0, -2, -2, -1, 0, -2, 1, -1, -1, -1, 0, -4, 0, -1, 0, -3, -2, -2, 0, -1, -3, -2, 1, -2, 0, -1, -1, -1, 0, -4, 2, -2, -1, -1, 0, -2, -1, -1, -1, -1, 0, -4, 0, -2, -1, -1, 0, -7, 0, -1, -1, -2, 0, -2, 1, -1, -3, -2, 0
OFFSET
1,8
COMMENTS
Also the 2-adic valuation of ratio A318681(n)/A299150(n) [which is equal to A318649(n)/A318512(n), but not represented in lowest terms], as well as the 2-adic valuation of A318680(n)/A299150(n) = A318511(n)/A318512(n).
LINKS
FORMULA
a(n) = A318655(n) - A318513(n).
a(n) = A007814(n) - A318440(n).
a(n) = 2*A007814(n) - A046645(n) = A007814(n^2) - A046645(n).
PROG
(PARI)
A007814(n) = valuation(n, 2);
A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
A046644(n) = factorback(apply(e -> 2^A005187(e), factor(n)[, 2]));
A318656(n) = ((2*A007814(n))-A007814(A046644(n)));
CROSSREFS
Cf. A318654 (positions of positive terms).
Sequence in context: A073644 A123343 A054439 * A215151 A305806 A064722
KEYWORD
sign
AUTHOR
Antti Karttunen, Sep 02 2018
STATUS
approved