This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064437 a(1)=1, a(n)=a(n-1)+3 if n is already in the sequence, a(n)=a(n-1)+2 otherwise. 13
 1, 3, 6, 8, 10, 13, 15, 18, 20, 23, 25, 27, 30, 32, 35, 37, 39, 42, 44, 47, 49, 51, 54, 56, 59, 61, 64, 66, 68, 71, 73, 76, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 122, 124, 126, 129, 131, 134, 136, 138, 141, 143, 146, 148, 150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS More generally let (x,y,z) be 3 positive integers and a(n) be the sequence a(1)=x, a(n)=a(n-1)+y if n is already in the sequence, a(n)=a(n-1)+z otherwise. Then it seems that a(n) is asymptotic to r*n where r is the largest positive root of q^2=z*q+z-y. Example: (x,y,z) = (2, 1, 2) gives A004956(n), (x,y,z) = (1, 2, 3) gives A007066(n). The present sequence is the case (1, 3, 2). LINKS Robert Israel, Table of n, a(n) for n = 1..10000 B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2. B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308) FORMULA a(n) = ceiling((1+sqrt(2))*(n-1)+C) where C = 1/(2+sqrt(2)) = .292893218813... EXAMPLE a(6)=13 hence a(13)=a(12)+3=27+3=30 MAPLE A064437:= n -> ceil((1+sqrt(2))*(n-1)+1/(2+sqrt(2))): seq(A064437(n), n=1..100); # Robert Israel, May 19 2014 MATHEMATICA a[1] = 1; a[n_] := a[n] = a[n-1] + If[MemberQ[Array[a, n-1], n], 3, 2]; Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *) PROG (PARI) ?an=vector(100); an[1]=1; a(n)=if(n<0, 0, an[n]) ?x=1; y=3; z=2; an[1]=x; for(n=2, 100, an[n]=if(setsearch(Set(vector(n- 1, i, a(i))), n), a(n-1)+y, a(n-1)+z)) (Haskell) a064437 n = a064437_list !! (n-1) a064437_list = 1 : f 2 [1] where    f x zs@(z:_) = y : f (x + 1) (y : zs) where      y = if x `elem` zs then z + 3 else z + 2 -- Reinhard Zumkeller, Sep 26 2014 CROSSREFS Cf. A004956, A007066, A026351, A079000. Apart from start, equals A080652 + 1. Sequence in context: A304497 A189937 A190325 * A287180 A072149 A001066 Adjacent sequences:  A064434 A064435 A064436 * A064438 A064439 A064440 KEYWORD nonn AUTHOR Benoit Cloitre, Feb 14 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 16:09 EDT 2019. Contains 325049 sequences. (Running on oeis4.)