This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189937 a(n) = n + [n*s/r] + [n*t/r]; r=1, s=sin(pi/8), t=cos(pi/8). 3
 1, 3, 6, 8, 10, 13, 15, 18, 20, 22, 25, 27, 29, 31, 33, 36, 38, 40, 43, 45, 48, 50, 52, 55, 57, 59, 61, 63, 66, 68, 70, 73, 75, 78, 80, 82, 85, 87, 89, 91, 93, 96, 98, 100, 103, 105, 107, 110, 112, 115, 117, 119, 121, 123, 126, 128, 130, 133, 135, 137, 140, 142, 145, 147, 149, 151, 153, 156, 158, 160, 163, 165, 167, 170, 172, 175, 177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that a(n) = n + [n*s/r] + [n*t/r], b(n) = n + [n*r/s] + [n*t/s], c(n) = n + [n*r/t] + [n*s/t], where []=floor. Taking r=1, s=sin(pi/8), t=cos(pi/8) gives a=A189937, b=A189938, c=A189939. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 FORMULA A189937:  a(n) = n + [n*sin(pi/8)] + [n*cos(pi/8)]. A189938:  b(n) = n + [n*csc(pi/8)] + [n*cot(pi/8)]. A189939:  c(n) = n + [n*sec(pi/8)] + [n*tan(pi/8)]. MATHEMATICA r=1; s=Sin[Pi/8]; t=Cos[Pi/8]; a[n_] := n + Floor[n*s/r] + Floor[n*t/r]; b[n_] := n + Floor[n*r/s] + Floor[n*t/s]; c[n_] := n + Floor[n*r/t] + Floor[n*s/t]; Table[a[n], {n, 1, 120}]  (*A189937*) Table[b[n], {n, 1, 120}]  (*A189938*) Table[c[n], {n, 1, 120}]  (*A189939*) PROG (PARI) for(n=1, 100, print1(n + floor(n*sin(Pi/8)) + floor(n*cos(Pi/8)), ", ")) \\ G. C. Greubel, Jan 13 2018 (MAGMA) C := ComplexField(); [n + Floor(n*Sin(Pi(C)/8)) + Floor(n*Cos(Pi(C)/8)): n in [1..100]]; // G. C. Greubel, Jan 13 2018 CROSSREFS Cf. A189938, A189939. Sequence in context: A304500 A047282 A304497 * A190325 A064437 A287180 Adjacent sequences:  A189934 A189935 A189936 * A189938 A189939 A189940 KEYWORD nonn AUTHOR Clark Kimberling, May 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 08:08 EST 2019. Contains 329968 sequences. (Running on oeis4.)