

A026351


floor(n*phi) + 1, where phi = (1+sqrt(5))/2.


16



1, 2, 4, 5, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 43, 44, 46, 47, 49, 51, 52, 54, 56, 57, 59, 60, 62, 64, 65, 67, 68, 70, 72, 73, 75, 77, 78, 80, 81, 83, 85, 86, 88, 89, 91, 93, 94, 96, 98, 99
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(n)=least k such that s(k)=n, where s=A026350.
a(n)=position of nth 1 in A096270.
From Wolfdieter Lang, Jun 27 2011: (Start)
a(n) = A(n)+1, with Wythoff sequence A(n)=A000201(n), n>=1, and A(0)=0.
a(n) = floor(n*phi). Recall that floor(x) = (floor(x)+1) if x is not integer and floor(x) otherwise.
An exhaustive and disjoint decomposition of the integers is given by the following two Wythoff sequences A' and B: A'(0):=1 (not 0), A'(n):=a(n)=(A(n)+1), n>=1, A'(n) = A(n), n>=1, and B(n):=(B(n)+1)= A026352(n), n>=1, with B(n)=A001950(n), n>=1, and B(0)=0.
(End)
Where odd terms in A060142 occur: A060142(a(n)) = A219608(n).  Reinhard Zumkeller, Nov 26 2012


LINKS

Carmine Suriano, Table of n, a(n) for n = 0..10000
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
N. J. A. Sloane, Classic Sequences


MATHEMATICA

Table[Floor[n*GoldenRatio] + 1, {n, 0, 100}] (* T. D. Noe, Apr 15 2011 *)


PROG

(Haskell)
import Data.List (findIndices)
a026351 n = a026351_list !! n
a026351_list = findIndices odd a060142_list
 Reinhard Zumkeller, Nov 26 2012


CROSSREFS

Essentially same as A004956. Cf. A000201.
Complement of A026352.
Sequence in context: A087063 A047497 A004956 * A184656 A226720 A047212
Adjacent sequences: A026348 A026349 A026350 * A026352 A026353 A026354


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane, Clark Kimberling


STATUS

approved



