login
A062343
Primes whose sum of digits is 8.
13
17, 53, 71, 107, 233, 251, 431, 503, 521, 701, 1061, 1151, 1223, 1511, 1601, 2141, 2213, 2411, 3023, 3041, 3203, 3221, 4013, 4211, 5003, 5021, 6011, 6101, 7001, 10007, 10061, 10133, 10151, 10223, 10313, 10331, 10601, 11213, 11321, 11411
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..42745 (first 500 terms from Vincenzo Librandi)
FORMULA
Intersection of A000040 (primes) and A052222 (digit sum 8). - M. F. Hasler, Mar 09 2022
EXAMPLE
1151 belongs to the sequence since it is a prime with sum of digits = 8.
MATHEMATICA
Select[Prime[Range[500000]], Total[IntegerDigits[#]]==8 &] (* Vincenzo Librandi, Jul 08 2014 *)
PROG
(Magma) [p: p in PrimesUpTo(20000) | &+Intseq(p) eq 8]; // Vincenzo Librandi, Jul 08 2014
From M. F. Hasler, Mar 09 2022: (Start)
(PARI) select( {is_A062343(p, s=8)=sumdigits(p)==s&&isprime(p)}, primes([1, 12345])) \\ 2nd optional parameter for similar sequences with other digit sums.
(PARI) {A062343_upto_length(L, s=8, a=List(), u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Vecrev(a)} \\ (End)
CROSSREFS
Cf. A000040 (primes), A007953 (sum of digits), A052222 (digit sum = 8).
Cf. A062339 (same for digit sum s = 4), A062341 (s = 5), A062337 (s = 7), A107579 (s = 10), and others listed in A244918 (s = 68).
Subsequence of A062342 (primes with digit sum divisible by 8).
Sequence in context: A062342 A295869 A061242 * A176254 A287311 A285225
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved