login
A062341
Primes whose sum of digits is 5.
14
5, 23, 41, 113, 131, 311, 401, 1013, 1031, 1103, 1301, 2003, 2111, 3011, 4001, 10103, 10211, 10301, 11003, 12011, 12101, 13001, 20021, 20201, 21011, 21101, 30011, 100103, 101021, 101111, 102101, 103001, 120011, 121001, 200003, 200201, 201011, 201101, 202001
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..14312 (first 100 terms from Harvey P. Dale)
FORMULA
Intersection of A000040 (primes) with A052219 (digit sum 5). - M. F. Hasler, Mar 09 2022
EXAMPLE
1301 belongs to the sequence since it is a prime with sum of digits = 5.
MAPLE
T:= n-> `if`(n=1, 5, sort(select(isprime, [seq(seq(seq(
10^(n-1)+1+10^i+10^j+10^k, k=1..j), j=1..i), i=1..n-1),
seq(10^(n-1)+3+10^i, i=1..n-1)]))[]):
seq(T(n), n=1..8); # Alois P. Heinz, Dec 28 2015
MATHEMATICA
Select[Prime[Range[20000]], Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 24 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(250000) | &+Intseq(p) eq 5]; // Vincenzo Librandi, Jul 08 2014
(Python)
from sympy import primerange as primes
def ok(p): return sum(map(int, str(p))) == 5
print(list(filter(ok, primes(1, 202002)))) # Michael S. Branicky, May 23 2021
(PARI)
\\ From M. F. Hasler, Mar 09 2022: (Start)
select( {is_A062341(p, s=5)=sumdigits(p)==s&&isprime(p)}, primes([1, 10^6])) \\ 2nd optional parameter for similar sequences with other digit sums.
A062341_upto_length(L, s=5, a=List(), u=[10^k|k<-[0..L-1]])={forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Set(a)} \\ (End)
CROSSREFS
Cf. A000040 (primes), A007953 (sum of digits), A052219 (digit sum = 5).
Cf. A062339 (same for digit sum s = 4), A062337 (s = 7), and others listed in A244918 (s = 68).
Subsequence of A062340 (primes with sum of digits divisible by 5).
Sequence in context: A242215 A061240 A243401 * A176251 A293533 A121308
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved