OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..14312 (first 100 terms from Harvey P. Dale)
FORMULA
EXAMPLE
1301 belongs to the sequence since it is a prime with sum of digits = 5.
MAPLE
T:= n-> `if`(n=1, 5, sort(select(isprime, [seq(seq(seq(
10^(n-1)+1+10^i+10^j+10^k, k=1..j), j=1..i), i=1..n-1),
seq(10^(n-1)+3+10^i, i=1..n-1)]))[]):
seq(T(n), n=1..8); # Alois P. Heinz, Dec 28 2015
MATHEMATICA
Select[Prime[Range[20000]], Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 24 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(250000) | &+Intseq(p) eq 5]; // Vincenzo Librandi, Jul 08 2014
(Python)
from sympy import primerange as primes
def ok(p): return sum(map(int, str(p))) == 5
print(list(filter(ok, primes(1, 202002)))) # Michael S. Branicky, May 23 2021
(PARI)
\\ From M. F. Hasler, Mar 09 2022: (Start)
select( {is_A062341(p, s=5)=sumdigits(p)==s&&isprime(p)}, primes([1, 10^6])) \\ 2nd optional parameter for similar sequences with other digit sums.
A062341_upto_length(L, s=5, a=List(), u=[10^k|k<-[0..L-1]])={forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Set(a)} \\ (End)
CROSSREFS
Subsequence of A062340 (primes with sum of digits divisible by 5).
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved