login
A062342
Primes whose sum of digits is a multiple of 8.
3
17, 53, 71, 79, 97, 107, 233, 251, 277, 349, 367, 431, 439, 457, 503, 521, 547, 619, 673, 691, 701, 709, 727, 853, 907, 1061, 1069, 1087, 1151, 1223, 1249, 1429, 1447, 1483, 1511, 1601, 1609, 1627, 1663, 1753, 1861, 1933, 1951, 2141, 2213, 2239, 2293
OFFSET
1,1
FORMULA
Intersection of A000040 (primes) and A273188 (numbers with sum of digits divisible by 8). - M. F. Hasler, Mar 10 2022
EXAMPLE
709 is a prime with sum of digits = 16, hence belongs to the sequence.
MATHEMATICA
Select[Prime[Range[500]], Divisible[Total[IntegerDigits[#]], 8]&] (* Harvey P. Dale, Jun 23 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(10000) | &+Intseq(p) mod 8 eq 0 ]; // Vincenzo Librandi, Apr 02 2011
(PARI) is(n)= sumdigits(n)%8==0 && isprime(n) \\ Charles R Greathouse IV, Mar 09 2022
CROSSREFS
Contains A062343 (primes with sum of digits s = 8), A106757 (s = 16), A106768 (s = 32), A106773 (s = 40), A106784 (s = 56) and A107618 (s = 64) as a subsequence.
Subsequence of A062338 (primes with sum of digits divisible by 4) and of A273188 (numbers with sum of digits divisible by 8).
Sequence in context: A041564 A286211 A213997 * A295869 A061242 A062343
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jun 21 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
STATUS
approved