login
A061830
Multiples of 5 having only even digits.
2
0, 20, 40, 60, 80, 200, 220, 240, 260, 280, 400, 420, 440, 460, 480, 600, 620, 640, 660, 680, 800, 820, 840, 860, 880, 2000, 2020, 2040, 2060, 2080, 2200, 2220, 2240, 2260, 2280, 2400, 2420, 2440, 2460, 2480, 2600, 2620, 2640, 2660, 2680, 2800, 2820, 2840
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
FORMULA
a(0)=0, a(1)=20, a(2)=40, a(3)=60, a(4)=80, a(5)=200, a(6)=220, a(7)=240, a(8)=260, a(9)=280, a(10)=400, a(11)=420, a(12)=440, a(13)=460, a(14)=480, a(15)=600, a(16)=620, a(17)=640, a(18)=660, a(19)=680, a(20)=800, a(21)=820, a(22)=840, a(23)=860, a(24)=880, a(25)=2000, a(n)=a(n-1)+ a(n-25)- a(n-26). - Harvey P. Dale, Feb 24 2014
EXAMPLE
220 = 5*44 is a term having all even digits.
MATHEMATICA
Select[5*Range[0, 2000], And@@EvenQ[IntegerDigits[#]]&] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 20, 40, 60, 80, 200, 220, 240, 260, 280, 400, 420, 440, 460, 480, 600, 620, 640, 660, 680, 800, 820, 840, 860, 880, 2000}, 50] (* Harvey P. Dale, Feb 24 2014 *)
PROG
(PARI) is(n)=n%10==0 && #setintersect(Set(digits(n)), [1, 3, 5, 7, 9])==0 \\ Charles R Greathouse IV, Feb 15 2017
CROSSREFS
Cf. A061829.
Sequence in context: A049057 A065607 A008602 * A235282 A270296 A338433
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, May 29 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
STATUS
approved