OFFSET
1,2
COMMENTS
Sequence gives the values of n for which the length of the binary representation of n^3 differs from ceiling(10*log_10(n)) rounded up.
The largest number not in the sequence is 158489319246111348520210137339 = floor(10^29.2). - Robert Israel, Oct 27 2020
LINKS
Jeremy Gardiner, Table of n, a(n) for n = 1..1083
Index entries for linear recurrences with constant coefficients, signature (2,-1).
MAPLE
filter:= n -> evalb(ilog2(n^3)+1 <> ceil(10*log[10](n))):
select(filter, [$1..1000]); # Robert Israel, Oct 27 2020
MATHEMATICA
Select[Range[1000], IntegerLength[#^3, 2] != Ceiling[10*Log10[#]] &] (* Amiram Eldar, Oct 27 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Gardiner, Oct 27 2020
STATUS
approved