

A061827


Number of partitions of n into parts which are the digits of n.


9



1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 4, 4, 3, 3, 3, 3, 1, 11, 1, 4, 7, 3, 5, 2, 4, 2, 1, 11, 6, 1, 3, 3, 7, 2, 2, 5, 1, 11, 11, 4, 1, 3, 4, 2, 7, 2, 1, 11, 6, 4, 3, 1, 2, 2, 2, 2, 1, 11, 11, 11, 6, 3, 1, 2, 3, 4, 1, 11, 6, 4, 3, 3, 2, 1, 2, 2, 1, 11, 11, 4, 11, 3, 4, 2, 1, 2, 1, 11, 6, 11, 3, 3, 6, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


COMMENTS

a(A125289(n)) = 1, a(A125290(n)) > 1.


LINKS

Reinhard Zumkeller and Alois P. Heinz, Table of n, a(n) for n = 1..15000 [Terms 1 through 1250 were computed by Reinhard Zumkeller, terms 1251 through 15000 by Alois P. Heinz]


EXAMPLE

For n = 11, 1+1+1+1+1+1+1+1+1+1+1. so a(11) = 1. For n = 12, 2+2+2+2+2+2 = 2+2+1+1+1+1+1+1+1+1 = ...etc
a(20) = 1: the only partitions permitted use the digits 0 and 2, so there is just 1, 20 = 2+2+2... ten times.


PROG

(Haskell)
import Data.List (sort, nub)
import Data.Char (digitToInt)
a061827 n =
p n (map digitToInt $ nub $ sort $ filter (/= '0') $ show n) where
p _ [] = 0
p 0 _ = 1
p m ds'@(d:ds)
 m < d = 0
 otherwise = p (m  d) ds' + p m ds
 Reinhard Zumkeller, Aug 01 2011


CROSSREFS

Cf. A061828, A109950, A119999, A125291, A136460, A193513.
Sequence in context: A021574 A021061 A066960 * A273841 A112407 A154195
Adjacent sequences: A061824 A061825 A061826 * A061828 A061829 A061830


KEYWORD

nonn,base,easy,look


AUTHOR

Amarnath Murthy, May 28 2001


EXTENSIONS

More terms from David Wasserman, Jul 29 2002


STATUS

approved



