login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061712 Smallest prime with Hamming weight n (i.e. with exactly n 1's when written in binary). 22
2, 3, 7, 23, 31, 311, 127, 383, 991, 2039, 3583, 6143, 8191, 73727, 63487, 129023, 131071, 522239, 524287, 1966079, 4128767, 16250879, 14680063, 33546239, 67108351, 201064447, 260046847, 536739839, 1073479679, 5335154687, 2147483647 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = 2^n - 1 for n in A000043, so Mersenne primes A000668 is a subsequence of this one. Binary length of a(n) is given by A110699 and the number of zeros in a(n) is given by A110700. - Max Alekseyev, Aug 03 2005

Drmota, Mauduit, & Rivat prove that a(n) exists for n > N for some N. - Charles R Greathouse IV, May 17 2010

A000120(a(n)) = A014499(A049084(a(n))) = n. - Reinhard Zumkeller, Feb 10 2013

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..3320 (first 1024 terms from T. D. Noe)

Michael Drmota, Christian Mauduit, and Joel Rivat, Primes with an average sum of digits, Compositio Mathematica 145 (2009), pp. 271-292.

MathOverflow, Are there primes of every Hamming weight?

Samuel S. Wagstaff, Prime numbers with a fixed number of one bits or zero bits in their binary representation, Experimental Mathematics 10 (2001), pp. 267-273.

FORMULA

Conjecture: a(n) < 2^(n+3). - T. D. Noe, Mar 14 2008

EXAMPLE

The fourth term is 23 (10111 in binary), since no prime less than 23 has exactly 4 1's in its binary representation.

MAPLE

with(combstruct); a:=proc(n) local m, is, s, t, r; if n=1 then return 2 fi; r:=+infinity; for m from 0 to 100 do is := iterstructs(Combination(n-2+m), size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i, i=s); # print(s, t); if isprime(t) then r:=min(t, r) fi; od; if r<+infinity then return r fi; od; return 0; end; seq(a(n), n=1..60); # Max Alekseyev, Aug 03 2005

MATHEMATICA

Do[k = 1; While[ Count[ IntegerDigits[ Prime[k], 2], 1] != n, k++ ]; Print[ Prime[k]], {n, 1, 30} ]

(* Second program: *)

a[n_] := Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n-2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[ s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Print["a(", n, ") = ", p]; Return[p]]]]]; a[1] = 2; Array[a, 100] (* Jean-Fran├žois Alcover, Mar 16 2015 *)

PROG

(Haskell)

a061712 n = fromJust $ find ((== n) . a000120) a000040_list

-- Reinhard Zumkeller, Feb 10 2013

(PARI) a(n)=forprime(p=2, , if (hammingweight(p) == n, return(p)); ); \\ Michel Marcus, Mar 16 2015

CROSSREFS

Cf. A001348, A000043, A000668, A110699, A110700.

Sequence in context: A127581 A278477 A118883 * A059661 A214704 A231075

Adjacent sequences:  A061709 A061710 A061711 * A061713 A061714 A061715

KEYWORD

nonn,base,nice,changed

AUTHOR

Alex Healy, Jun 19 2001

EXTENSIONS

Extended to 60 terms by Max Alekseyev, Aug 03 2005

Further terms from T. D. Noe, Mar 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 18:10 EDT 2017. Contains 289671 sequences.