OFFSET
1,1
COMMENTS
The Mersenne primes (A000668) are a subsequence.
LINKS
Robert Israel, Table of n, a(n) for n = 1..3301
MAPLE
M:= 40: # to use A061712(1..M)
A061712:= proc(n) local d, c, cands;
for d from 0 do
cands:= map(t -> 2^(n+d)-1 - add(2^(n-1+d-j), j=t),
combinat:-choose([$1..n-2+d], d));
for c in cands do if isprime(c) then return c fi od
od
end proc:
A061712(1):= 2:
R:= map(A061712, [$1..M]):
R[select(t -> R[t] < `if`(isprime(2^(M+1)-1), 2^(M+1)-1, 2^(M+2)+2^M-1) and R[t] = min(R[t..-1]), [$1..nops(R)])]; # Robert Israel, Nov 23 2016
PROG
(PARI) {my(h=0); forprime(p=2, 10^11, my(t=hammingweight(p)); if(t>h, print1(p, ", "); h=t)); }
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Joerg Arndt, Nov 23 2016
STATUS
approved