|
|
A061062
|
|
Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.
|
|
9
|
|
|
1, 2, 6, 42, 618, 15018, 533418, 25935018, 1651637418, 133333531818, 13301522971818, 1606652445211818, 231049185247771818, 39006837228880411818, 7639061293780877851818, 1717651314017980301851818
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
There is a Kurepa-like conjecture (see A049782) for this sequence: for primes p>3, p does not divide a(p-1). However, the conjecture fails for p=20879. - T. D. Noe, Dec 08 2004
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..253 (terms 0..100 from Harry J. Smith)
|
|
FORMULA
|
a(n) = sum(k=0...n, (n-k)!^2 ). - Ross La Haye, Sep 21 2004
Recurrence: a(0) = 1, a(1) = 2, a(n) = (n^2+1)*a(n-1) - n^2*a(n-2). - Vladimir Reshetnikov, Oct 28 2015
|
|
EXAMPLE
|
a(2) = 0!*0! + 1!*1! + 2!*2! = 6.
|
|
MAPLE
|
A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # Zerinvary Lajos, Jan 22 2008
|
|
MATHEMATICA
|
s=0; Table[s=s+(n!)^2, {n, 0, 20}]
Accumulate[(Range[0, 20]!)^2] (* Harvey P. Dale, Apr 19 2015 *)
|
|
PROG
|
(PARI) { a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ Harry J. Smith, Jul 17 2009
|
|
CROSSREFS
|
Cf. A001044, A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2), A104344 (if sum starts at k=1), A049782.
Sequence in context: A066864 A181737 A116896 * A270141 A294349 A325782
Adjacent sequences: A061059 A061060 A061061 * A061063 A061064 A061065
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jason Earls, May 27 2001
|
|
EXTENSIONS
|
More terms from T. D. Noe, Dec 08 2004
|
|
STATUS
|
approved
|
|
|
|