login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060654 a(n) = gcd(n, A060766(n)). 1
1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 30, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 60, 1, 31, 21, 32, 13, 33, 1, 34, 23, 70, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40, 27, 41 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

LINKS

Robert Israel, Table of n, a(n) for n = 2..10000

FORMULA

a(n) = gcd(n, lcm(dd(n))), where dd(n) is the first difference of divisors (ordered by size).

EXAMPLE

If n is prime p, then A060766(p) = p-1 and lcm(p, p-1) = 1. If n=2k then a(2k)=k or as an "anomaly", a(2k)=2k.

At n=30, D={1, 2, 3, 5, 6, 10, 15, 30}, dD={1, 1, 2, 1, 4, 5, 15}={1, 2, 4, 5, 15}, lcm(dD)=60, gcd(n, lcm(dD(n))) = gcd(30, 60) = 30 = n.

At n=36, D={1, 2, 3, 4, 6, 9, 12, 18, 36}, dD={1, 1, 1, 2, 3, 3, 6, 18}={1, 2, 3, 6, 18}, lcm(dD)=18, gcd(n, lcm(dD(n))) = gcd(36, 18) = 18 = n/2.

MAPLE

A060766:= proc(n) local F; F:= sort(convert(numtheory:-divisors(n), list));

   ilcm(op(F[2..-1] - F[1..-2])) end proc:

seq(igcd(n, A060766(n)), n=2..100); # Robert Israel, Dec 20 2015

MATHEMATICA

Table[GCD[n, LCM @@ Differences@ Divisors@ n], {n, 2, 82}] (* Michael De Vlieger, Dec 20 2015 *)

CROSSREFS

Cf. A000005, A060680-A060685, A060741, A060742, A060763-A060766.

Sequence in context: A079880 A159353 A032742 * A291329 A291328 A280497

Adjacent sequences:  A060651 A060652 A060653 * A060655 A060656 A060657

KEYWORD

nonn

AUTHOR

Labos Elemer, Apr 25 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 09:05 EST 2017. Contains 295957 sequences.