login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060656 a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1. 10
1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1) is the Hankel transform of A135052. - Paul Barry, Nov 15 2007

a(n+1) is the Hankel transform of the aerated large Schroeder numbers. a(n) and a(n+1) both satisfy the trivial Somos-4 recurrence u(n)=4*u(n-2)^2/u(n-4). Associated with the elliptic curve y^2=1-6x^2+x^4 via Schroeder numbers. - Paul Barry, Dec 08 2009

Hankel transform of A089324. - Paul Barry, Mar 01 2010

a(n+1) is the number of n X n binary matrices that are symmetric about both diagonals (bisymmetric). For the derivation of this result, see the link below. - Dennis P. Walsh, Apr 03 2014

1 followed by {a(n-1)}_(n>=1) is the Somos-3 sequence: b(0)=b(1)=b(2)=1;for n>=3, b(n)=2*b(n-1)*b(n-2)/b(n-3) (cf. comment in A078495). - Vladimir Shevelev, Apr 20 2016

If the Hankel transform is defined as in the link 'Sequence transformations' then a(n) is the Hankel transform of A151374. - Peter Luschny, Nov 30 2016

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..100

Peter Luschny, Sequence transformations

Dennis P. Walsh, Notes on binary bisymmetric matrices

FORMULA

a(n) = 2^floor( n^2/4 ) = a(n - 1) * 2^floor( n/2 ) = a(n - 2) * 2^(n - 1) = a(n - 1) * A016116(n) = 2^A002620(n).

0 = a(n) * a(n+3) + a(n+1) * ( -2*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014

0 = a(n) * a(n+4) + a(n+2) * ( -4*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014

EXAMPLE

a(6) = 2*64*16/4 = 512.

G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...

MAPLE

A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014

MATHEMATICA

a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *)

PROG

(PARI) { for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009

(PARI) {a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */

CROSSREFS

Cf. A002416, A002620, A016116, A038754, A089324, A135052, A262666, A078495, A151374.

Sequence in context: A153998 A154001 A154004 * A271234 A061286 A019279

Adjacent sequences:  A060653 A060654 A060655 * A060657 A060658 A060659

KEYWORD

nonn,easy,changed

AUTHOR

Henry Bottomley, Apr 18 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 10:32 EST 2016. Contains 278971 sequences.