

A159353


a(n) = the smallest positive integer such that a(n) *(2^n 2) is a multiple of n.


4



1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 2, 1, 15, 1, 16, 11, 17, 35, 18, 1, 19, 13, 20, 1, 21, 1, 22, 3, 23, 1, 24, 7, 25, 17, 26, 1, 27, 55, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 23, 5, 1, 36, 1, 37, 25, 38, 77, 39, 1, 40, 27, 41, 1, 42
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

This is not the same sequence as sequence A032742, where A032742(n) = the largest proper divisor of n. See A146077 for numbers n such that the sequences A032742 and A159353 differ.


LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = Denominator((2^n  2)/n).  JuriStepan Gerasimov, Sep 09 2014


MATHEMATICA

Array[Block[{k = 1}, While[! Divisible[k (2^#  2), #], k++]; k] &, 84] (* Michael De Vlieger, Oct 30 2017 *)


PROG

(MAGMA) [Denominator((2^n2)/n): n in [1..84]]; // JuriStepan Gerasimov, Sep 09 2014
(PARI) a(n)=my(k=1); while((2^n2)*k%n != 0, k++); return(k) \\ Edward Jiang, Sep 09 2014
(PARI) a(n)=denominator(lift(Mod(2, n)^n2)/n) \\ Charles R Greathouse IV, Sep 11 2014


CROSSREFS

Cf. A000918, A146077.
Sequence in context: A326139 A325641 A325563 * A032742 A060654 A291329
Adjacent sequences: A159350 A159351 A159352 * A159354 A159355 A159356


KEYWORD

nonn


AUTHOR

Leroy Quet, Apr 11 2009


EXTENSIONS

Extended by Ray Chandler, Apr 11 2009


STATUS

approved



