login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059936 Fifth step in Goodstein sequences, i.e., g(7) if g(2)=n: write g(6)=A059935(n) in hereditary representation base 6, bump to base 7, then subtract 1 to produce g(7). 18
0, 109, 1197, 98039, 823543, 1647195, 2471826, 4215754, 5764801, 5764910, 5765998, 5862840, 6588344, 5103702287864892035208610181878203902270504134895451401860454182513968464023205038690962121196797 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

LINKS

Table of n, a(n) for n=3..16.

R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.

Eric Weisstein's World of Mathematics, Goodstein Sequence

Wikipedia, Goodstein's Theorem

Reinhard Zumkeller, Haskell programs for Goodstein sequences

EXAMPLE

a(12) = 5764910 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685, g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019 and g(7) = 7^(7 + 1) + 2*7^2 + 7 + 4 = 5764910.

PROG

(Haskell)  see Link

CROSSREFS

Cf. A056004, A057650, A059933, A059934, A059935.

Sequence in context: A239720 A096214 A173665 * A262854 A232118 A201849

Adjacent sequences:  A059933 A059934 A059935 * A059937 A059938 A059939

KEYWORD

nonn

AUTHOR

Henry Bottomley, Feb 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 04:09 EDT 2019. Contains 328106 sequences. (Running on oeis4.)