login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057650 Second step in Goodstein sequences, i.e. g(4) if g(2)=n: (first step) write g(2)=n in hereditary representation base 2, bump to base 3, then subtract 1 to produce g(3)=A056004(n), then (second step) write g(3) in hereditary representation base 3, bump to base 4, then subtract 1 to produce g(4). 16
1, 3, 41, 255, 257, 259, 553, 1023, 1025, 1027, 1065, 1279, 1281, 1283, 50973998591214355139406377, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 2..1000

R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.

Eric Weisstein's World of Mathematics, Heriditary Representation.

Eric Weisstein's World of Mathematics, Goodstein Sequence.

Wikipedia, Goodstein's Theorem

Reinhard Zumkeller, Haskell programs for Goodstein sequences

EXAMPLE

a(12)=1065 since with g(2)=12=2^(2+1)+2^2, we get g(3)=3^(3+1)+3^3-1=107=3^(3+1)+2*3^2+2*3+2 and g(4)=4^(4+1)+2*4^2+2*4+2-1=1065. a(17)=4^(4^4)-1, with g(2)=17=2^(2^2)+1 and g(3)=3^(3^3).

Similarly a(18)=4^(4^4)+1, with g(2)=18=2^(2^2)+2 and g(3)=3^(3^3)+2.

PROG

(Haskell)  see Link

CROSSREFS

Cf. A056004, A059933, A059934, A059935, A059936.

Sequence in context: A106978 A260832 A089131 * A181226 A159249 A087544

Adjacent sequences:  A057647 A057648 A057649 * A057651 A057652 A057653

KEYWORD

nonn

AUTHOR

Henry Bottomley, Oct 13 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 04:50 EST 2016. Contains 278960 sequences.