login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059935 Fourth step in Goodstein sequences, i.e., g(6) if g(2)=n: write g(5)=A059934(n) in hereditary representation base 5, bump to base 6, then subtract 1 to produce g(6). 15
1, 83, 775, 46655, 46657, 93395, 140743, 279935, 279937, 280019, 280711, 326591, 326593, 19916489515870532960258562190639398471599239042185934648024761145811 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

LINKS

Table of n, a(n) for n=3..16.

R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.

Eric Weisstein's World of Mathematics, Goodstein Sequence

Wikipedia, Goodstein's Theorem

Reinhard Zumkeller, Haskell programs for Goodstein sequences

EXAMPLE

a(12) = 280019 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685 and g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019.

PROG

(Haskell)  see Link

CROSSREFS

Cf. A056004, A057650, A059933, A059934, A059936.

Sequence in context: A176633 A059236 A212379 * A069596 A290407 A112766

Adjacent sequences:  A059932 A059933 A059934 * A059936 A059937 A059938

KEYWORD

nonn

AUTHOR

Henry Bottomley, Feb 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 20:45 EDT 2019. Contains 325109 sequences. (Running on oeis4.)