login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059917 a(n) = (3^(2^n) + 1)/2 = A059919(n)/2, n >= 0. 4
2, 5, 41, 3281, 21523361, 926510094425921, 1716841910146256242328924544641, 5895092288869291585760436430706259332839105796137920554548481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Average of first 2^(n+1) powers of 3 divided by average of first 2^n powers of 3.

Numerator of b(n) where b(n) = 1/2*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002

From Daniel Forgues, Jun 22 2011: (Start)

Since for the generalized Fermat numbers 3^(2^n)+1 (A059919), we have a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e. 1)+ 2 = 4 = a(0). This formula implies that the GCD of any pair of terms of A059919 is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime.

2, 5, 41, 21523361, 926510094425921 are prime. 3281 = 17*193. (End)

a(0), a(1), a(2), a(4), a(5), and a(6) are prime. Conjecture: a(n) is composite for all n > 6. - Thomas Ordowski, Dec 26 2012

This may be a primarity test for Mersenne number. a(3)=41 == -1 mod 7 (=M3), a(5)=21523361 == 30 == -1 mod 31 (=M5). However, a(11) is not ==-1 mod M11. - Nobuyuki Fujita, May 16 2015

LINKS

Harry J. Smith, Table of n, a(n) for n=0..11

FORMULA

a(n) = a(n-1)*(3^(2^(n-1)) + 1) - 3^(2^(n-1)) = A059723(n+1)/A059723(n) = A059918(n) + 1 = a(n-1)*A059919(n-1) - A011764(n-1).

a(0) = 2; a(n) = ((2*a(n-1) - 1)^2 + 1)/2, n >= 1. - Daniel Forgues, Jun 22 2011

EXAMPLE

a(2) = Average(1,3,9,27,81,243,729,2187)/Average(1,3,9,27) = 410/10 = 41.

MATHEMATICA

Table[(3^(2^n) + 1)/2, {n, 0, 10}] (* Vincenzo Librandi, May 16 2015 *)

PROG

(PARI) { for (n=0, 11, write("b059917.txt", n, " ", (3^(2^n) + 1)/2); ) } \\ Harry J. Smith, Jun 30 2009

(MAGMA) [(3^(2^n)+1)/2: n in [0..10]]; // Vincenzo Librandi, May 16 2015

CROSSREFS

Cf. A059918, A059919.

Sequence in context: A126469 A054859 A076725 * A255963 A093625 A042447

Adjacent sequences:  A059914 A059915 A059916 * A059918 A059919 A059920

KEYWORD

nonn,frac

AUTHOR

Henry Bottomley, Feb 08 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 13:17 EDT 2017. Contains 284270 sequences.