The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059917 a(n) = (3^(2^n) + 1)/2 = A059919(n)/2, n >= 0. 5
 2, 5, 41, 3281, 21523361, 926510094425921, 1716841910146256242328924544641, 5895092288869291585760436430706259332839105796137920554548481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Average of first 2^(n+1) powers of 3 divided by average of first 2^n powers of 3. Numerator of b(n) where b(n) = (1/2)*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002 From Daniel Forgues, Jun 22 2011: (Start) Since for the generalized Fermat numbers 3^(2^n)+1 (A059919), we have a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0). This formula implies that the GCD of any pair of terms of A059919 is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. 2, 5, 41, 21523361, 926510094425921 are prime. 3281 = 17*193. (End) a(0), a(1), a(2), a(4), a(5), and a(6) are prime. Conjecture: a(n) is composite for all n > 6. - Thomas Ordowski, Dec 26 2012 This may be a primality test for Mersenne numbers. a(2) = 41 == -1 mod 7 (=M3), a(4) = 21523361 == 30 == -1 mod 31 (=M5). However, a(10) is not == -1 mod M11. - Nobuyuki Fujita, May 16 2015 LINKS Harry J. Smith, Table of n, a(n) for n = 0..11 A. Granville, Using Dynamical Systems to Construct Infinitely Many Primes, arXiv:1708.06953 [math.NT], 2017. A. Granville, Using Dynamical Systems to Construct Infinitely Many Primes, The American Mathematical Monthly 125, no. 6 (2018), 483-496. DOI: 10.1080/00029890.2018.1447732 FORMULA a(n) = a(n-1)*(3^(2^(n-1)) + 1) - 3^(2^(n-1)) = A059723(n+1)/A059723(n) = A059918(n) + 1 = a(n-1)*A059919(n-1) - A011764(n-1). a(0) = 2; a(n) = ((2*a(n-1) - 1)^2 + 1)/2, n >= 1. - Daniel Forgues, Jun 22 2011 EXAMPLE a(2) = Average(1,3,9,27,81,243,729,2187)/Average(1,3,9,27) = 410/10 = 41. MAPLE seq((3^(2^n)+1)/2, n=0..11); # Muniru A Asiru, Aug 07 2018 MATHEMATICA Table[(3^(2^n) + 1)/2, {n, 0, 10}] (* Vincenzo Librandi, May 16 2015 *) PROG (PARI) { for (n=0, 11, write("b059917.txt", n, " ", (3^(2^n) + 1)/2); ) } \\ Harry J. Smith, Jun 30 2009 (Magma) [(3^(2^n)+1)/2: n in [0..10]]; // Vincenzo Librandi, May 16 2015 (GAP) List([0..10], n->(3^(2^n)+1)/2); # Muniru A Asiru, Aug 07 2018 CROSSREFS Cf. A059918, A059919. Primes are in A093625. Sequence in context: A126469 A054859 A076725 * A255963 A093625 A042447 Adjacent sequences: A059914 A059915 A059916 * A059918 A059919 A059920 KEYWORD nonn,frac AUTHOR Henry Bottomley, Feb 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 15:24 EST 2022. Contains 358588 sequences. (Running on oeis4.)