login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059919 Generalized Fermat numbers: 3^(2^n)+1, n >= 0. 15
4, 10, 82, 6562, 43046722, 1853020188851842, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096962 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Generalized Fermat numbers (Ribenboim (1996))

  F_n(a) := F_n(a,1) = a^(2^n) + 1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for this sequence). - Daniel Forgues, Jun 19-20 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..13

Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446.

C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=3)

Wilfrid Keller, GFN3 factoring status

Eric Weisstein's World of Mathematics, Generalized Fermat Number

OEIS Wiki, Generalized Fermat numbers

FORMULA

a(0) = 4; a(n) = (a(n-1)-1)^2 + 1, n >= 1.

a(n) = A011764(n)+1 = A059918(n+1)/A059918(n) = (A059917(n+1)-1)/(A059917(n)-1) = (A059723(n)/A059723(n+1))*(A059723(n+2)-A059723(n+1))/(A059723(n+1)-A059723(n))

a(n) = A057727(n)-1. - R. J. Mathar, Apr 23 2007

a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0).

The above formula implies the GCD of any pair of terms is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. - Daniel Forgues, Jun 20 & 22 2011

EXAMPLE

a(0) = 3^(2^0)+1 = 3^1+1 = 4 = 2*(1)+2 = 2*(empty product)+2;

a(1) = 3^(2^1)+1 = 3^2+1 = 10 = 2*(4)+2;

a(2) = 3^(2^2)+1 = 3^4+1 = 82 = 2*(4*10)+2;

a(3) = 3^(2^3)+1 = 3^8+1 = 6562 = 2*(4*10*82)+2;

a(4) = 3^(2^4)+1 = 3^16+1 = 43046722 = 2*(4*10*82*6562)+2;

a(5) = 3^(2^5)+1 = 3^32+1 = 1853020188851842 = 2*(4*10*82*6562*43046722)+2;

MAPLE

A059919:=n->3^(2^n)+1; seq(A059919(n), n=0..7); # Wesley Ivan Hurt, Jan 22 2014

MATHEMATICA

Table[3^2^n + 1, {n, 0, 7}] (* Arkadiusz Wesolowski, Nov 02 2012 *)

PROG

(PARI) { for (n=0, 11, write("b059919.txt", n, " ", 3^(2^n) + 1); ) } \\ Harry J. Smith, Jun 30 2009

(MAGMA) [3^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011

CROSSREFS

Cf. A000215 Fermat numbers: 2^(2^n) + 1, n >= 0.

Cf. A059917 for (3^(2^n)+1)/2.

Cf. A199591, A078303, A078304, A152581, A080176, A199592, A152585.

Sequence in context: A239502 A171754 A215872 * A143047 A156329 A266839

Adjacent sequences:  A059916 A059917 A059918 * A059920 A059921 A059922

KEYWORD

easy,nonn

AUTHOR

Henry Bottomley, Feb 08 2001

EXTENSIONS

Edited by Daniel Forgues, Jun 19 2011 and Jun 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 03:29 EST 2018. Contains 318049 sequences. (Running on oeis4.)