The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059919 Generalized Fermat numbers: 3^(2^n)+1, n >= 0. 16
 4, 10, 82, 6562, 43046722, 1853020188851842, 3433683820292512484657849089282, 11790184577738583171520872861412518665678211592275841109096962 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Generalized Fermat numbers (Ribenboim (1996)) F_n(a) := F_n(a,1) = a^(2^n) + 1, a >= 2, n >= 0, can't be prime if a is odd (as is the case for this sequence). - Daniel Forgues, Jun 19-20 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10 (shortened by N. J. A. Sloane, Jan 13 2019) Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446. C. K. Caldwell, "Top Twenty" page, Generalized Fermat Divisors (base=3). Wilfrid Keller, GFN3 factoring status. Eric Weisstein's World of Mathematics, Generalized Fermat Number. OEIS Wiki, Generalized Fermat numbers. FORMULA a(0) = 4; a(n) = (a(n-1)-1)^2 + 1, n >= 1. a(n) = A011764(n)+1 = A059918(n+1)/A059918(n) = (A059917(n+1)-1)/(A059917(n)-1) = (A059723(n)/A059723(n+1))*(A059723(n+2)-A059723(n+1))/(A059723(n+1)-A059723(n)) a(n) = A057727(n)-1. - R. J. Mathar, Apr 23 2007 a(n) = 2*a(n-1)*a(n-2)*...*a(1)*a(0) + 2, n >= 0, where for n = 0, we get 2*(empty product, i.e., 1) + 2 = 4 = a(0). The above formula implies the GCD of any pair of terms is 2, which means that the terms of (3^(2^n)+1)/2 (A059917) are pairwise coprime. - Daniel Forgues, Jun 20 & 22 2011 Sum_{n>=0} 2^n/a(n) = 1/2. - Amiram Eldar, Oct 03 2022 EXAMPLE a(0) = 3^(2^0)+1 = 3^1+1 = 4 = 2*(1)+2 = 2*(empty product)+2; a(1) = 3^(2^1)+1 = 3^2+1 = 10 = 2*(4)+2; a(2) = 3^(2^2)+1 = 3^4+1 = 82 = 2*(4*10)+2; a(3) = 3^(2^3)+1 = 3^8+1 = 6562 = 2*(4*10*82)+2; a(4) = 3^(2^4)+1 = 3^16+1 = 43046722 = 2*(4*10*82*6562)+2; a(5) = 3^(2^5)+1 = 3^32+1 = 1853020188851842 = 2*(4*10*82*6562*43046722)+2; MAPLE A059919:=n->3^(2^n)+1; seq(A059919(n), n=0..7); # Wesley Ivan Hurt, Jan 22 2014 MATHEMATICA Table[3^2^n + 1, {n, 0, 7}] (* Arkadiusz Wesolowski, Nov 02 2012 *) PROG (PARI) { for (n=0, 11, write("b059919.txt", n, " ", 3^(2^n) + 1); ) } \\ Harry J. Smith, Jun 30 2009 (Magma) [3^(2^n) + 1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011 CROSSREFS Cf. A000215 (Fermat numbers: 2^(2^n) + 1, n >= 0). Cf. A059917 ((3^(2^n)+1)/2). Cf. A199591, A078303, A078304, A152581, A080176, A199592, A152585. Sequence in context: A239502 A171754 A215872 * A143047 A156329 A266839 Adjacent sequences: A059916 A059917 A059918 * A059920 A059921 A059922 KEYWORD easy,nonn AUTHOR Henry Bottomley, Feb 08 2001 EXTENSIONS Edited by Daniel Forgues, Jun 19 2011 and Jun 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:46 EST 2022. Contains 358703 sequences. (Running on oeis4.)