login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059912 Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n). 9
1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..71, flattened

Polynomial order: computes the order of an irreducible polynomial over a finite field GF(p).

Eric Weisstein's World of Mathematics, Irreducible Polynomial

FORMULA

T(n,k) = k-th smallest element of M(n) = {d : d|(2^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. - Alois P. Heinz, Jun 01 2012

EXAMPLE

Triangle begins:

1;

3;

7;

5,    15;

31;

9,    21,  63;

127;

17,   51,  85, 255;

73,  511;

11,   33,  93, 341, 1023;

There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.

MAPLE

with (numtheory):

M:= proc(n) option remember;

      divisors(2^n-1) minus U(n-1)

    end:

U:= proc(n) option remember;

      `if`(n=0, {}, M(n) union U(n-1))

    end:

T:= n-> sort([M(n)[]])[]:

seq (T(n), n=1..20);  # Alois P. Heinz, May 31 2012

MATHEMATICA

m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-Fran├žois Alcover, Jun 14 2012, after Alois P. Heinz *)

CROSSREFS

Cf. A058943, A059478, A059499, A001037, A059913.

Cf. A212906, A212485, A212486.

Column k=1 of A212737.

Column k=1 gives: A212953.

Last elements of rows give: A000225.

Sequence in context: A090940 A090916 A184162 * A115765 A112071 A231609

Adjacent sequences:  A059909 A059910 A059911 * A059913 A059914 A059915

KEYWORD

easy,nonn,tabf

AUTHOR

Vladeta Jovovic, Feb 09 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 25 22:57 EDT 2014. Contains 248564 sequences.