login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059912 Triangle T(n,k) of orders of n degree irreducible polynomials over GF(2) listed in ascending order, k=1..A059499(n). 9
1, 3, 7, 5, 15, 31, 9, 21, 63, 127, 17, 51, 85, 255, 73, 511, 11, 33, 93, 341, 1023, 23, 89, 2047, 13, 35, 39, 45, 65, 91, 105, 117, 195, 273, 315, 455, 585, 819, 1365, 4095, 8191, 43, 129, 381, 5461, 16383, 151, 217, 1057, 4681, 32767, 257, 771, 1285, 3855 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..71, flattened

Polynomial order: computes the order of an irreducible polynomial over a finite field GF(p).

Eric Weisstein's World of Mathematics, Irreducible Polynomial

FORMULA

T(n,k) = k-th smallest element of M(n) = {d : d|(2^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. - Alois P. Heinz, Jun 01 2012

EXAMPLE

Triangle begins:

1;

3;

7;

5,    15;

31;

9,    21,  63;

127;

17,   51,  85, 255;

73,  511;

11,   33,  93, 341, 1023;

There are 18 (cf. A001037) irreducible polynomials of degree 7 over GF(2) which all have order 127.

MAPLE

with(numtheory):

M:= proc(n) option remember;

      divisors(2^n-1) minus U(n-1)

    end:

U:= proc(n) option remember;

      `if`(n=0, {}, M(n) union U(n-1))

    end:

T:= n-> sort([M(n)[]])[]:

seq(T(n), n=1..20);  # Alois P. Heinz, May 31 2012

MATHEMATICA

m[n_] := m[n] = Complement[ Divisors[2^n - 1], u[n - 1]]; u[0] = {}; u[n_] := u[n] = Union[ m[n], u[n - 1]]; t[n_, k_] := m[n][[k]]; Flatten[ Table[t[n, k], {n, 1, 16}, {k, 1, Length[ m[n] ]}]] (* Jean-Fran├žois Alcover, Jun 14 2012, after Alois P. Heinz *)

CROSSREFS

Cf. A058943, A059478, A059499, A001037, A059913.

Cf. A212906, A212485, A212486.

Column k=1 of A212737.

Column k=1 gives: A212953.

Last elements of rows give: A000225.

Sequence in context: A090940 A090916 A184162 * A115765 A269369 A112071

Adjacent sequences:  A059909 A059910 A059911 * A059913 A059914 A059915

KEYWORD

easy,nonn,tabf

AUTHOR

Vladeta Jovovic, Feb 09 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 11:53 EST 2016. Contains 279001 sequences.