

A108974


Sort the primes (except 2) according to the multiplicative order of 2 modulo that prime. If two primes have the same order of 2, they are arranged numerically.


5



3, 7, 5, 31, 127, 17, 73, 11, 23, 89, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 47, 178481, 241, 601, 1801, 2731, 262657, 29, 113, 233, 1103, 2089, 331, 2147483647, 65537, 599479, 43691, 71, 122921, 37, 109, 223, 616318177, 174763, 79
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Or, primitive prime divisors of the Mersenne numbers 2^n1 (see A000225) in their order of occurrence.
Of course the Mersenne primes 2^p1 (cf. A000043) appear in this sequence.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..4275
G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417431.
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265284.


EXAMPLE

The order of 2 modulo 3 is 2 and the order of 2 modulo 7 is 3. So 3 comes before 7.


PROG

(PARI) do(n)=my(v=List(), P=1, g, t, f); for(k=2, n, t=2^k1; g=P; while((g=gcd(g, t))>1, t/=g); f=factor(t)[, 1]; for(i=1, #f, listput(v, f[i])); P*=t); Vec(v) \\ Charles R Greathouse IV, Sep 23 2016


CROSSREFS

Cf. A000225, A000043, A001348, A014664, A086251.
Sequence in context: A212953 A161818 A161509 * A106853 A083778 A107785
Adjacent sequences: A108971 A108972 A108973 * A108975 A108976 A108977


KEYWORD

nonn


AUTHOR

Douglas Stones (dssto1(AT)student.monash.edu.au), Jul 27 2005


EXTENSIONS

More terms from Martin Fuller, Sep 25 2006


STATUS

approved



