login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212737 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k lists the orders of degree-d irreducible polynomials over GF(prime(k)); listing order for each column: ascending d, ascending value. 12
1, 1, 3, 1, 2, 7, 1, 2, 4, 5, 1, 2, 4, 8, 15, 1, 2, 3, 3, 13, 31, 1, 2, 5, 6, 6, 26, 9, 1, 2, 3, 10, 4, 8, 5, 21, 1, 2, 4, 4, 3, 8, 12, 10, 63, 1, 2, 3, 8, 6, 4, 12, 24, 16, 127, 1, 2, 11, 6, 16, 12, 6, 16, 31, 20, 17, 1, 2, 4, 22, 9, 3, 7, 8, 24, 62, 40, 51 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Antidiagonals n = 1..141, flattened

Eric Weisstein's World of Mathematics, Irreducible Polynomial

Eric Weisstein's World of Mathematics, Polynomial Order

FORMULA

Formulae for the column sequences are given in A059912, A212906, ... .

EXAMPLE

For k=1 the irreducible polynomials over GF(prime(1)) = GF(2) of degree 1-4 are: x, 1+x; 1+x+x^2; 1+x+x^3, 1+x^2+x^3; 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. The orders of these polynomials p (i.e., the smallest integer e for which p divides x^e+1) are 1; 3; 7; 5, 15. (Example: (1+x^3+x^4) * (1+x^3+x^4+x^6+x^8+x^9+x^10+x^11) == x^15+1 (mod 2)). Thus column k=1 begins: 1, 3, 7, 5, 15, ... .

Square array A(n,k) begins:

    1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...

    3,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...

    7,  4,  4,  3,  5,  3,  4,  3, 11,  4, ...

    5,  8,  3,  6, 10,  4,  8,  6, 22,  7, ...

   15, 13,  6,  4,  3,  6, 16,  9,  3, 14, ...

   31, 26,  8,  8,  4, 12,  3, 18,  4, 28, ...

    9,  5, 12, 12,  6,  7,  6,  4,  6,  3, ...

   21, 10, 24, 16,  8,  8,  9,  5,  8,  5, ...

   63, 16, 31, 24, 12, 14, 12,  8, 12,  6, ...

  127, 20, 62, 48, 15, 21, 18, 10, 16,  8, ...

MAPLE

with(numtheory):

M:= proc(n, i) M(n, i):= divisors(ithprime(i)^n-1) minus U(n-1, i) end:

U:= proc(n, i) U(n, i):= `if`(n=0, {}, M(n, i) union U(n-1, i)) end:

b:= proc(n, i) b(n, i):= sort([M(n, i)[]])[] end:

A:= proc() local l; l:= proc() [] end;

      proc(n, k) local t;

        if nops(l(k))<n then l(k):= [];

          for t while nops(l(k))<n

            do l(k):= [l(k)[], b(t, k)] od

        fi; l(k)[n]

      end:

    end():

seq(seq(A(n, 1+d-n), n=1..d), d=1..15);

MATHEMATICA

m[n_, i_] := Divisors[Prime[i]^n-1] ~Complement~ u[n-1, i]; u[n_, i_] := u[n, i] = If[n == 0, {}, m[n, i] ~Union~ u[n-1, i]]; b[n_, i_] := Sort[m[n, i]]; a = Module[{l}, l[_] = {}; Function[{n, k}, Module[{t}, If [Length[l[k]] < n, l[k] = {}; For[t = 1, Length[l[k]] < n, t++, l[k] = Join[l[k], b[t, k]]]]; l[k][[n]]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* Jean-Fran├žois Alcover, Dec 20 2013, translated from Maple *)

CROSSREFS

Columns k=1-10 give: A059912, A212906, A212485, A212486, A218336, A218337, A218338, A218339, A218340, A218341.

Sequence in context: A024743 A024963 A283435 * A134348 A191862 A266055

Adjacent sequences:  A212734 A212735 A212736 * A212738 A212739 A212740

KEYWORD

nonn,look,tabl

AUTHOR

Alois P. Heinz, Jun 02 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 06:14 EST 2018. Contains 317162 sequences. (Running on oeis4.)