This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059861 a(n) = Product_{i=2..n} (prime(i) - 2). 9
 1, 1, 3, 15, 135, 1485, 22275, 378675, 7952175, 214708725, 6226553025, 217929355875, 8499244879125, 348469040044125, 15681106801985625, 799736446901266875, 45584977473372211875, 2689513670928960500625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Arises in Hardy-Littlewood k-tuple conjecture. Also a(n) is the exact number of d=2 and also d=4 differences in dRRS[modulus=n-th primorial]; see A049296 (dRRS[m]=set of first differences of reduced residue system modulo m). For n>1 this is the determinant of the (n-1) X (n-1) matrix whose diagonal is A006093(n) = {1, 2, 4, 6, 10, 12, 16, 18..} = the first primes minus 1 and all other elements are 1's. The determinant begins: / (2-1) 1 1 1 1 1 1 ... / 1 (3-1) 1 1 1 1 1 ... / 1 1 (5-1) 1 1 1 1 ... / 1 1 1 (7-1) 1 1 1 ... / 1 1 1 1 (11-1) 1 1 ... / 1 1 1 1 1 (13-1) 1 ... - Alexander Adamchuk, May 21 2006 From Gary W. Adamson, Apr 21 2009: (Start) Equals (-1)^n * (1, 1, 1, 3, 15, ...) dot (1, -2, 4, -6, 10, ...). a(6) = 135 = (1, 1, 1, 3, 15) dot (1, -2, 4, -6, 10) = (1, -2, 4, -18, 150). (End) REFERENCES Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94. R. K. Guy, Unsolved Problems in Number Theory, Sections A8, A1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979. G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954. LINKS C. K. Caldwell, Prime k-tuple Conjecture Steven R. Finch, Hardy-Littlewood Constants [Broken link] Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923. G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy] G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly, 66 (1959), 375-384. FORMULA a(n) = Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ] for n>1. - Alexander Adamchuk, May 21 2006 EXAMPLE n=4, a(4) = 1*(3-2)*(5-2)*(7-2) = 15. 48 first terms of A049296 give one complete period of dRRS[210], in which 15 d=2, 15 d=4 and 18 larger differences occur. For n=1, 2, ..., 5 in the periods of length {1, 2, 8, 48, 480, ...} [see A005867] the number of d=2 and also d=4 differences is {1, 1, 3, 15, 135, ..} MATHEMATICA Table[ Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ], {n, 2, 20} ] (* Alexander Adamchuk, May 21 2006 *) Table[Product[Prime@k - 2, {k, 2, n}], {n, 1, 18}] (* Harlan J. Brothers, Jul 02 2018 *) a[1] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 2); Table[a[n], {n, 18}]  (* Harlan J. Brothers, Jul 02 2018 *) PROG (PARI) a(n) = prod(i=2, n, prime(i)-2); \\ Michel Marcus, Apr 16 2017 CROSSREFS Cf. A049296, A002110, A005867, A000847, A022008, A051160-A051168, A048298, A059861-A059865, A040976. Cf. A067549, A006093. Sequence in context: A222263 A246804 A230166 * A232699 A030539 A028362 Adjacent sequences:  A059858 A059859 A059860 * A059862 A059863 A059864 KEYWORD nonn AUTHOR Labos Elemer, Feb 28 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:11 EDT 2019. Contains 328336 sequences. (Running on oeis4.)