login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059864 a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime. 0
1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Such products arise in Hardy-Littlewood prime k-tuplet conjectural formulas.

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

R. K. Guy, Unsolved Problems in Number Theory, A8, A1

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.

G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954

LINKS

Table of n, a(n) for n=1..19.

C. K. Caldwell, Prime k-tuple Conjecture

Steven R. Finch, Hardy-Littlewood Constants [Broken link]

Steven R. Finch, Hardy-Littlewood Constants [From the Wayback machine]

G. H. Hardy and J. E. Littlewood, Some problems of 'partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923.

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

G. Polya, Heuristic reasoning in the theory of numbers, Am. Math. Monthly,66 (1959), 375-384.

MATHEMATICA

Join[{1, 1, 1}, FoldList[Times, Prime[Range[4, 20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)

PROG

(PARI) a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017

CROSSREFS

Cf. A049296, A002110, A005867, A000847, A022008, A051160-A051168, A048298, A059861-A059865.

Sequence in context: A206855 A219119 A052611 * A095338 A308820 A322717

Adjacent sequences:  A059861 A059862 A059863 * A059865 A059866 A059867

KEYWORD

nonn

AUTHOR

Labos Elemer, Feb 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)