This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057502 Permutation of natural numbers: rotations of non-crossing handshakes encoded by A014486 (to opposite direction of A057501). 30
 0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 16, 18, 14, 15, 20, 19, 21, 9, 10, 22, 11, 12, 13, 45, 44, 46, 42, 43, 48, 47, 49, 37, 38, 50, 39, 40, 41, 54, 53, 55, 51, 52, 57, 56, 58, 23, 24, 59, 25, 26, 27, 61, 60, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 129, 128, 130, 126, 127 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In A057501 and A057502, the cycles between (A014138(n-1)+1)-th and (A014138(n))-th term partition A000108(n) objects encoded by the corresponding terms of A014486 into A002995(n+1) equivalence classes of planar trees, thus the latter sequence can be produced also with Maple procedure RotHandshakesPermutationCycleCounts given below. LINKS A. Karttunen, Gatomorphisms (Includes the complete Scheme program for computing this sequence) MAPLE map(CatalanRankGlobal, map(RotateHandshakesR, A014486)); RotateHandshakesR := n -> pars2binexp(deepreverse(RotateHandshakesP(deepreverse(binexp2pars(n))))); deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end; with(group); CountCycles := b -> (nops(convert(b, 'disjcyc')) + (nops(b)-convert(map(nops, convert(b, 'disjcyc')), `+`))); RotHandshakesPermutationCycleCounts := proc(upto_n) local u, n, a, r, b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n, n)/(n+1)); for r from 0 to u-1 do b := [op(b), 1+CatalanRank(n, RotateHandshakes(CatalanUnrank(n, r)))]; od; a := [op(a), CountCycles(b)]; od; RETURN(a); end; # For other procedures, follow A057501. PROG (Scheme function implementing this automorphism on list-structures:) (define (RotateHandshakesInv! s) (cond ((not (pair? s))) ((not (pair? (cdr s))) (swap! s)) (else (RotateHandshakesInv! (cdr s)) (robl! s))) s) (define (robl! s) (let ((ex-car (car s))) (set-car! s (cddr s)) (set-cdr! (cdr s) ex-car) (swap! (cdr s)) (swap! s) s)) (define (swap! s) (let ((ex-car (car s))) (set-car! s (cdr s)) (set-cdr! s ex-car) s)) CROSSREFS Inverse of A057501 and the car/cdr-flipped conjugate of A069774, i.e. A057502(n) = A057163(A069774(A057163(n))). Cf. also A057507, A057510, A057513, A069771, A069772. Sequence in context: A139285 A080398 A082321 * A071656 A130963 A130930 Adjacent sequences:  A057499 A057500 A057501 * A057503 A057504 A057505 KEYWORD nonn AUTHOR Antti Karttunen, Sep 03 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 23:44 EST 2019. Contains 319206 sequences. (Running on oeis4.)