login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057085 a(0)=0, a(1)=1; for n>1, a(n) = 9a(n-1) - 9a(n-2). 8
0, 1, 9, 72, 567, 4455, 34992, 274833, 2158569, 16953624, 133155495, 1045816839, 8213952096, 64513217313, 506693386953, 3979621526760, 31256353258263, 245490585583527, 1928108090927376, 15143557548094641, 118939045114505385, 934159388097696696 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Scaled Chebyshev U-polynomials evaluated at 3/2.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=-9.

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=9.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (9,-9).

FORMULA

Also Fibonacci(2n)*3^(n-1).

a(n) = S(n, 3)*3^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.

a(n) = A001906(n)*A000244(n-1) = A001906(n)*A000244(n)/3. - Robert G. Wilson v, Sep 21 2006

a(2k) = A004187(k)*9^k/3, a(2k-1) = A033890(k)*9^k.

G.f.: x/(1-9*x+9*x^2).

a(n) = (1/3)*sum(k=0, n, binomial(n, k)*F(4*k)) where F(k) denotes the k-th Fibonacci number. - Benoit Cloitre, Jun 21 2003

a(n) = -(1/15)*[9/2-(3/2)*sqrt(5)]^n*sqrt(5)+(1/15)*sqrt(5)*[9/2+(3/2)*sqrt(5)]^n. - Paolo P. Lava, Jun 16 2008

a(n+1) = Sum_{k=0..n} A109466(n,k)*9^k. - Philippe Deléham, Oct 28 2008

MATHEMATICA

f[n_] := Fibonacci[2n]*3^(n - 1); Table[f@n, {n, 0, 20}] (* or *)

a[0] = 0; a[1] = 1; a[n_] := a[n] = 9(a[n - 1] - a[n - 2]); Table[a[n], {n, 0, 20}] (* or *)

CoefficientList[Series[x/(1 - 9x + 9x^2), {x, 0, 20}], x] (* Robert G. Wilson v Sep 21 2006 *)

PROG

(PARI) a(n)=(1/3)*sum(k=0, n, binomial(n, k)*fibonacci(4*k)) \\ Benoit Cloitre

(Sage) [lucas_number1(n, 9, 9) for n in xrange(0, 21)] # Zerinvary Lajos, Apr 23 2009

(PARI) concat(0, Vec(x/(1-9*x+9*x^2) + O(x^30))) \\ Colin Barker, Jun 14 2015

CROSSREFS

Cf. A000045, A030191.

Sequence in context: A162755 A045993 A084327 * A076765 A006634 A129328

Adjacent sequences:  A057082 A057083 A057084 * A057086 A057087 A057088

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 11 2000

EXTENSIONS

Edited by N. J. A. Sloane, Sep 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 21:02 EST 2018. Contains 299469 sequences. (Running on oeis4.)