This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006634 From generalized Catalan numbers. (Formerly M4648) 7
 1, 9, 72, 570, 4554, 36855, 302064, 2504304, 20974005, 177232627, 1509395976, 12943656180, 111676661460, 968786892675, 8445123522144, 73940567860896, 649942898236596, 5733561315124260, 50744886833898400, 450461491952952690, 4009721145437152530, 35782256673785401065 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Plouffe, Simon, Master Thesis, copy at the arXiv site FORMULA G.f.: 4F3([9/4, 5/2, 11/4, 3],[10/3, 11/3, 4],256/27*x), - Simon Plouffe, Master Thesis, UQAM, 1992. G.f.: g^9 where g = 1+x*g^4 is the g.f. of A002293. # Mark van Hoeij, Apr 22 2013 MAPLE series(RootOf(g = 1+x*g^4, g)^9, x=0, 30);  #Mark van Hoeij, Apr 22 2013 MATHEMATICA f[x_] := HypergeometricPFQ[ {9/4, 5/2, 11/4, 3}, {10/3, 11/3, 4}, 256/27*x]; Series[f[x], {x, 0, 16}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 23 2013, after Simon Plouffe *) PROG (PARI) N = 3*66;  x = 'x + O('x^N); g=serreverse(x-x^4)/x; gf=g^9;  v=Vec(gf); vector(#v\3, n, v[3*n-2]) /* Joerg Arndt, Apr 23 2013 */ CROSSREFS Sequence in context: A084327 A057085 A076765 * A129328 A162960 A163391 Adjacent sequences:  A006631 A006632 A006633 * A006635 A006636 A006637 KEYWORD nonn AUTHOR EXTENSIONS More terms, Joerg Arndt, Apr 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 20:55 EST 2018. Contains 318049 sequences. (Running on oeis4.)