OFFSET
0,4
COMMENTS
Divisibility sequence; that is, if n divides m, then a(n) divides a(m).
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..96
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
FORMULA
a(n) = F(n)^10, F(n)=A000045(n).
G.f.: x*p(10, x)/q(10, x) with p(10, x) := sum_{m=0..9} A056588(9, m)*x^m = (1-x)*(1 - 87*x - 4047*x^2 + 42186*x^3 + 205690*x^4 + 42186*x^5 - 4047*x^6 - 87*x^7 + x^8) and q(10, x) := sum_{m=0..11} A055870(11, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)*(1 + 47*x + x^2)*(1 - 123*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..11} A055870(11, m)*a(n-m) = 0, n >= 11; inputs: a(n), n=0..10. a(n) = 89*a(n-1) + 4895*a(n-2) - 83215*a(n-3) - 582505*a(n-4) + 1514513*a(n-5) + 1514513*a(n-6) - 582505*a(n-7) -83215*a(n-8) + 4895*a(n-9) + 89*a(n-10) - a(n-11).
MATHEMATICA
Fibonacci[Range[0, 15]]^10 (* Harvey P. Dale, Jul 29 2018 *)
PROG
(Magma) [Fibonacci(n)^10: n in [0..20]]; // Vincenzo Librandi, Jun 04 2011
(PARI) a(n) = fibonacci(n)^10; \\ Michel Marcus, Sep 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 10 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001
STATUS
approved