login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056588 Coefficient triangle of certain polynomials. 18
1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
G.f. for column m: see column sequences: A000012, A000071, A056589-91, for m=0..4.
The row polynomials p(n,x) := sum(a(n,m)*x^m) occur as numerators of the g.f. for the (n+1)-th power of Fibonacci numbers A000045. The corresponding denominator polynomials are the row polynomials q(n+2,x) = Sum_{m=0..n+2} A055870(n+2, m)*x^m (signed Fibonomial triangle).
The row polynomials p(n,x) and the companion denominator polynomials q(n,x) can be deduced from Riordan's recursion result.
The explicit formula is found from the recursion relation for powers of Fibonacci numbers (see Knuth's exercise with solution). - Roger L. Bagula, Apr 03 2010
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 84, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
LINKS
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
FORMULA
a(n, m)=0 if n<m; a(n, 0)=1; a(n, m) = F(m+1)^(n+1) + sum(sfibonomial(n+2, j)*(F(m+1-j)^(n+1)), j=1..m) m=1..n, with F(n)=A000045(n) (Fibonacci) and sfibonomial(n, m) := A055870(n, m).
From Roger L. Bagula, Apr 03 2010: (Start)
p(x,n) = Sum_{k>=0} (((1 + sqrt(5))^k - (1 - sqrt(5))^k)/(2^k*sqrt(5)))^n*x^k;
t(n,m) = Numerator_coefficients(p(x,n)/x)/2^(1 + floor(n/2));
out(n,m) = t(n,m)/t(n,1). (End)
T(n, k) = Sum_{j=0..k} Fibonacci(k+1-j)^(n+1) * A055870(n+2, j). - Tony Foster III, Aug 20 2018
Sum_{j=0..n-1} a(n-1, n-1-j)*A010048(k+j, n) = Fibonacci(k)^n. - Tony Foster III, Jul 24 2018
EXAMPLE
Row polynomial for n=4: p(4,x) = 1 - 7*x - 16*x^2 + 7*x^3 + x^4. x*p(4,x) is the numerator of the g.f. for A056572(n), n >= 0 (fifth power of Fibonacci numbers) {0,1,1,32,243,...}. The denominator polynomial is Sum_{m=0..6} A055870(6,m)*x^m (n=6 row polynomial of signed fibonomial triangle).
From Roger L. Bagula, Apr 03 2010: (Start)
1;
1, -1;
1, -2, -1;
1, -4, -4, 1;
1, -7, -16, 7, 1;
1, -12, -53, 53, 12, -1;
1, -20, -166, 318, 166, -20, -1;
1, -33, -492, 1784, 1784, -492, -33, 1;
1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1;
1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1; (End)
MAPLE
A056588 := proc(n, k)
if k = 0 then
1;
elif k >n then
0;
else
combinat[fibonacci](k+1)^(n+1)+add( A055870(n+2, j)*(combinat[fibonacci](k+1-j)^(n+1)), j=1..k) ;
end if;
end proc: # R. J. Mathar, Jun 14 2015
MATHEMATICA
p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}];
a = Table[CoefficientList[FullSimplify[Numerator[p[ x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}];
Table[a[[n]]/a[[n]][[1]], {n, 1, 10}];
Flatten[%] (* Roger L. Bagula, Apr 03 2010 *)
PROG
(PARI) S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
T(n, k) = sum(j=0, k, fibonacci(k+1-j)^(n+1) * S(n+2, j));
tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
tabl(9); \\ Tony Foster III, Aug 20 2018
CROSSREFS
Sequence in context: A203948 A296990 A156184 * A126770 A202979 A306326
KEYWORD
easy,sign,tabl
AUTHOR
Wolfdieter Lang, Jul 10 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 14:10 EDT 2024. Contains 371792 sequences. (Running on oeis4.)