login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056585 Eighth power of Fibonacci numbers A000045. 4
0, 1, 1, 256, 6561, 390625, 16777216, 815730721, 37822859361, 1785793904896, 83733937890625, 3936588805702081, 184884258895036416, 8686550888106661441, 408066367122340274881, 19170731299728100000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A divisibility sequence; that is, if n divides m, then a(n) divides a(m).

REFERENCES

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..107

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876. Mathematical Reviews, MR2959001. Zentralblatt MATH, Zbl 1255.05003.

Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.

A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.

J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.

Index to divisibility sequences

Index entries for linear recurrences with constant coefficients, signature (34,714,-4641,-12376,12376,4641,-714,-34,1).

FORMULA

a(n) = F(n)^8, F(n)=A000045(n).

G.f.: x*p(8, x)/q(8, x) with p(8, x) := sum_{m=0..7} A056588(7, m)*x^m = (1+x)*(1 - 34*x - 458*x^2 + 2242*x^3 - 458*x^4 - 34*x^5 + x^6) and q(8, x) := sum_{m=0..9} A055870(9, m)*x^m = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2)*(1 + 18*x + x^2)*(1 - 47*x + x^2) (denominator factorization deduced from Riordan result).

Recursion (cf. Knuth's exercise): sum_{m=0..9} A055870(9, m)*a(n-m) = 0, n >= 9; inputs: a(n), n=0..8. a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).

a(n+1) = 8*F(n)^2*F(n+1)^2*[F(n)^4+F(n+1)^4+4*F(n)^2*F(n+1)^2+3*F(n)*F(n+1)*F(n+2)]-[F(n)^8+F(n+2)^8]+2*[2*F(n+1)^2-(-1)^n]^4 = {Sum(0 <= j <= [n/2]; binomial(n-j, j))}^8, for n>=0 (This is Theorem 2.2 (vii) of Azarian's second paper in the references for this sequence). - Mohammad K. Azarian, Jun 29 2015

MATHEMATICA

lst={}; Do[f=Fibonacci[n]; AppendTo[lst, f^8], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)

Fibonacci[Range[0, 20]]^8 (* Harvey P. Dale, Jul 03 2017 *)

PROG

(MAGMA) [Fibonacci(n)^8: n in [0..20]]; // Vincenzo Librandi, Jun 04 2011

(PARI) a(n)=fibonacci(n)^8 \\ Charles R Greathouse IV, Jun 30 2015

CROSSREFS

Cf. A000045, A007598, A056570, A056571, A056572, A056573, A056574, A056588, A055870.

Sequence in context: A050755 A046457 A179645 * A231307 A206129 A236214

Adjacent sequences:  A056582 A056583 A056584 * A056586 A056587 A056588

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jul 10 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 07:11 EST 2017. Contains 294996 sequences.