login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055786
Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
8
1, 1, 3, 5, 35, 63, 231, 143, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 100180065, 116680311, 2268783825, 1472719325, 34461632205, 67282234305, 17534158031, 514589420475, 8061900920775, 5267108601573
OFFSET
0,3
COMMENTS
Note that the sequence is not monotonic.
REFERENCES
Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.2.6
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
LINKS
Eric Weisstein's World of Mathematics, Inverse Cosecant
Eric Weisstein's World of Mathematics, Inverse Cosine
Eric Weisstein's World of Mathematics, Inverse Secant
Eric Weisstein's World of Mathematics, Inverse Sine
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosine
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine
FORMULA
a(n) / A052469(n) = A001147(n) / ( A000165(n) *2*n ). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
a(n) = numerator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009
EXAMPLE
arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., which is x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... (A055786/A002595) when reduced to lowest terms.
arccos(x) = Pi/2 - (x + (1/6)*x^3 + (3/40)*x^5 + (5/112)*x^7 + (35/1152)*x^9 + (63/2816)*x^11 + ...) (A055786/A002595).
arccsc(x) = 1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ... (A055786/A002595).
arcsec(x) = Pi/2 -(1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ...) (A055786/A002595).
arcsinh(x) = x - (1/6)*x^3 + (3/40)*x^5 - (5/112)*x^7 + (35/1152)*x^9 - (63/2816)*x^11 + ... (A055786/A002595).
i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ... (A055786/A002595).
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A055786/A002595.
a(4) = 35 = 3*5*7*9 / gcd( 3*5*7*9, (2*4*6*8) * (2*4+1))
MAPLE
seq( numer( (n+1)*binomial(2*n+2, n+1)/(2^(2*n+1)*(2*n+1)^2) ), n=0..25); # G. C. Greubel, Jan 25 2020
MATHEMATICA
Numerator/@Select[CoefficientList[Series[ArcSin[x], {x, 0, 60}], x], #!=0&] (* Harvey P. Dale, Apr 29 2011 *)
PROG
(PARI) vector(25, n, numerator(2*n*binomial(2*n, n)/(4^n*(2*n-1)^2)) ) \\ G. C. Greubel, Jan 25 2020
(Magma) [Numerator( (n+1)*Binomial(2*n+2, n+1)/(2^(2*n+1)*(2*n+1)^2) ): n in [0..25]]; // G. C. Greubel, Jan 25 2020
(Sage) [numerator( (n+1)*binomial(2*n+2, n+1)/(2^(2*n+1)*(2*n+1)^2) ) for n in (0..25)] # G. C. Greubel, Jan 25 2020
CROSSREFS
Cf. A002595.
a(n) / A002595(n) = A001147(n) / ( A000165(n) * (2*n+1))
Cf. A162443 where BG1[-3,n] = (-1)*A002595(n-1)/A055786(n-1) for n >= 1. - Johannes W. Meijer, Jul 06 2009
Sequence in context: A346715 A259853 A052468 * A001790 A173092 A057908
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, Jul 13 2000
EXTENSIONS
Edited by Johannes W. Meijer, Jul 06 2009
STATUS
approved