login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052469 Denominators in the Taylor series for arccosh(x) - log(2x). 4
4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant

Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosine

Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine

FORMULA

A052468(n) / a(n) = A001147(n) / ( A000165(n) *2*n )

From Johannes W. Meijer, Jul 06 2009: (Start)

a(n) = denom((2*n-1)!/( 2^(2*n)* (n!)^2)).

Equals 2*A162442(n+1) for n >= 1.

A052468(n)/a(n) = (1/(2*n))*A001790(n)/A046161(n) for n>=1.

(End)

EXAMPLE

arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.

MATHEMATICA

a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-Fran├žois Alcover, May 17 2017 *)

PROG

(MAGMA) [Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017

CROSSREFS

Cf. A002595.

Sequence in context: A153794 A222326 A108914 * A211625 A211630 A211626

Adjacent sequences:  A052466 A052467 A052468 * A052470 A052471 A052472

KEYWORD

nonn,easy,frac

AUTHOR

Eric W. Weisstein

EXTENSIONS

Updated by Frank Ellermann, May 22 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 18:42 EDT 2017. Contains 290837 sequences.