login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002595 Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
(Formerly M4233 N1768)
6
1, 6, 40, 112, 1152, 2816, 13312, 10240, 557056, 1245184, 5505024, 12058624, 104857600, 226492416, 973078528, 2080374784, 23622320128, 30064771072, 635655159808, 446676598784, 11269994184704, 23639499997184, 6597069766656 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., = x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... when reduced to lowest terms.

arccos(x) = Pi/2 - (x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ...).

arccsc(x) = 1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...

arcsec(x) = Pi/2 -(1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...)

arcsinh(x) = x-1/6*x^3+3/40*x^5-5/112*x^7+35/1152*x^9-63/2816*x^11+...

arccsc(x) = arcsin(1/x) and arcsec(x) = arccos(1/x): 1 < |x|

arccsch(x) = arcsinh(1/x) for 1 < |x|

Also denominator of (2n-1)!! / ((2n+1)*(2n)!!) (n=>0).

REFERENCES

W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.

H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.

Focus, vol. 16, no. 5, page 32, Oct 1996.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.

Eric Weisstein's World of Mathematics, Inverse Cosecant

Eric Weisstein's World of Mathematics, Inverse Cosine

Eric Weisstein's World of Mathematics, Inverse Secant

Eric Weisstein's World of Mathematics, Inverse Sine

Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant

Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine

Eric Weisstein's World of Mathematics, Archimedes' Spiral

FORMULA

a(n) = denom((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009

MATHEMATICA

Denominator[Take[CoefficientList[Series[ArcSin[x], {x, 0, 50}], x], {2, -1, 2}]] (* Harvey P. Dale, Aug 06 2012 *)

CROSSREFS

A055786(n) / a(n) = A001147(n) / ( A000165(n) * (2*n+1))

Cf. A162443 where BG1[ -3,n] = (-1)*A002595(n-1)/A055786(n-1) for n =>1. - Johannes W. Meijer, Jul 06 2009

a(n) = 2*A143582(n+1) for n>=1. - Filip Zaludek, Oct 25 2016

Sequence in context: A110424 A114079 A211065 * A263956 A229638 A210291

Adjacent sequences:  A002592 A002593 A002594 * A002596 A002597 A002598

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 02:01 EST 2018. Contains 317332 sequences. (Running on oeis4.)