This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002595 Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x). (Formerly M4233 N1768) 6
 1, 6, 40, 112, 1152, 2816, 13312, 10240, 557056, 1245184, 5505024, 12058624, 104857600, 226492416, 973078528, 2080374784, 23622320128, 30064771072, 635655159808, 446676598784, 11269994184704, 23639499997184, 6597069766656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., = x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... when reduced to lowest terms. arccos(x) = Pi/2 - (x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ...). arccsc(x) = 1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+... arcsec(x) = Pi/2 -(1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...) arcsinh(x) = x-1/6*x^3+3/40*x^5-5/112*x^7+35/1152*x^9-63/2816*x^11+... arccsc(x) = arcsin(1/x) and arcsec(x) = arccos(1/x): 1 < |x| arccsch(x) = arcsinh(1/x) for 1 < |x| Also denominator of (2n-1)!! / ((2n+1)*(2n)!!) (n=>0). REFERENCES W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables). L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88. H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3. Focus, vol. 16, no. 5, page 32, Oct 1996. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=0..200 H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18. Eric Weisstein's World of Mathematics, Inverse Cosecant Eric Weisstein's World of Mathematics, Inverse Cosine Eric Weisstein's World of Mathematics, Inverse Secant Eric Weisstein's World of Mathematics, Inverse Sine Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine Eric Weisstein's World of Mathematics, Archimedes' Spiral FORMULA a(n) = denom((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009 MATHEMATICA Denominator[Take[CoefficientList[Series[ArcSin[x], {x, 0, 50}], x], {2, -1, 2}]] (* Harvey P. Dale, Aug 06 2012 *) CROSSREFS A055786(n) / a(n) = A001147(n) / ( A000165(n) * (2*n+1)) Cf. A162443 where BG1[ -3,n] = (-1)*A002595(n-1)/A055786(n-1) for n =>1. - Johannes W. Meijer, Jul 06 2009 a(n) = 2*A143582(n+1) for n>=1. - Filip Zaludek, Oct 25 2016 Sequence in context: A110424 A114079 A211065 * A263956 A229638 A210291 Adjacent sequences:  A002592 A002593 A002594 * A002596 A002597 A002598 KEYWORD nonn,frac,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 14:33 EDT 2019. Contains 325222 sequences. (Running on oeis4.)